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Introduction

Motivation

A few words on Cryptography

In naive words, a cryptosystem is an algorithm or algorithms that allow two users to share
secret information in the possible presence of a malicious third party, in such a way that
they are the only ones capable of seeing and manipulating this information. The first
idea that may come to our minds involve symmetric cryptosystems, where both parties
need to have a common shared secret key and they use that key to both encrypt and
decrypt information. This kind of cryptosystems impose a big problem, which is the process
of agreeing on a common key. If the parties are able to establish a shared secret key
securely, why do not they simply share the secret information in the same way? In historical
contexts, this key was established in a secure channel like a personal meeting, or a secure
line, and this key was used for some time. This may seem to work, but whenever the key
must be replaced, the whole complicated process of establishing the key must be repeated.
Moreover, communication today is performed between parties anywhere in the world, so a
different approach is needed.

A new type of cryptosystems evade this issue. In asymmetric or public key cryptosys-
tems, we don’t have only one key but we have two keys per user, a private key which only
the user knows and a public key which is accessible by everyone. Whenever user A wants to
send a message to user B, he encrypts the message using B’s public key and user B decrypts
it using her private key. The well known RSA cryptosystem is a public key cryptosystem.

Post-Quantum Cryptography and MPKC

To introduce what post-quantum cryptography is, consider the cryptosystem RSA. It is
widely accepted that computers today cannot factor big integers into primes in an efficient
manner. This is crucial to the security of RSA since, if one is able to factor large integers
into primes, then one is able to find RSA private keys and therefore the cryptosystem is
broken. However, quantum computers can perform this task in polynomial time so when
these computers appear RSA will not be secure anymore. Moreover, the Diffie-Hellman
key exchange protocol and many other cryptographic primitives widely used today will be
useless once quantum computers appear [Sho99]. This means that, in order to mantain our
communications secure, we need new cryptosystems whose security is based on problems
that can not be solved neither by classical computers nor by quantum computers.
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There are many problems that we can rely on to build quantum secure cryptosystems
[BBD08]. The one of interest to us is that of finding the solutions of a quadratic multivariate
polynomial system over a finite field, whose associated decisional problem is NP-complete
[GJ90], and public key cryptosystems whose security is based on the computational diffi-
culty of solving this problem are within the field of Multivariate Public Key Cryptogra-
phy (MPKC) [DGS06]. In these systems the public key is usually a tuple of multivariate
quadratic polynomials and encryption is performed by evaluating those polynomials at the
desired message, thus, being able to solve this system (set equal to some constants) gives
us the ability to find secret messages.

Groebner Bases

Given an ideal I of a polynomial ring F[x1, ..., xn], where F is a field, a Groebner basis of I
is a particular finite generating set of I that has some special and useful properties. In the
context of multivariate polynomial rings, a basis for a polynomial ideal is a generating set
of such. This fact, along the name of the thesis advisor of Bruno Buchberger, the developer
of the theory [Buc65], gives the name to Groebner bases. Such basis can be used to solve
many algebraic geometry and computational algebra problems, but the most important for
MPKC is that it allows to find the zeros of polynomial systems quite efficiently.

A Groebner basis can be computed from any given finite basis and there has been a
lot of work in developing more efficients algorithms to accomplish this. However, as we
pointed out before, solving a system of polynomial equations over a finite field is known
to be a hard computational problem so finding a Groebner basis is a hard computational
problem by itself.

Recall that cryptosystems developed within the frame of multivariate public key cryp-
tography (MPKC) can be broken if one is able to solve certain system of polynomial equa-
tions, therefore, finding a Groebner basis of the ideal generated by those polynomials is
a critical step for breaking such cryptosystems. As mentioned before, finding a Groebner
basis is not an easy task in the general case, however, the polynomial equations that arise
from MPKC cryptosystems are far from being general because of the necessity of leaving a
trapdoor for the legitimate user (the private key). Studying then the complexity of Groeb-
ner bases algorithms for the polynomial equations that arise from a particular cryptosystem
has become critical for the security of such, and a better understanding of the factors af-
fecting the computation has became imperative. A usual way to measure this complexity
is to look at some intrinsic properties of the polynomial system known as the degree of
regularity and the falling degree, which we will explain in detail.

The importance of tensor theory within this field becomes apparent once we consider
the fact that tensors are a natural generation of matrices, and allow for a general treatment
in the case of higher dimensions. Moreover, especially relevant for cryptography is the
existence of problems whose computational complexity is too hard for modern computers,
so that secure schemes can be built. It is surprising that many simple problems regarding
tensors of dimension higher than two are provably hard in the worst case, and with a
thorough analysis it may be possible to argue that some of these problems are also hard in
the average case. This would provide a new source of hard computational problems that
could be used to build cryptographic primitives
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Min-Rank Problem

The min-rank problem (MR) is, given k m × n matrices and a target rank r, to deter-
mine whether there exists a linear combination of the matrices of rank less or equal to r.
Although NP-complete in its general setting, there are efficient algorithms to solve it for
certain parameters. Indeed, Kipnis and Shamir modeled an attack on the HFE system as an
MR problem and were able to break it. Since then, other multivariate public key schemes
(MPK) have been subject to similar attacks. Rank defects also lead to other weakness such
as a fixed degree of regularity in the algebraic attack on HFE [DH11].

The importance of the rank itself, and the prevalence of MR as an attack technique in
MPK suggest a more central role as the underlying problem that supports security. For
example, we can think of HFE as a way to construct low rank quadratic polynomials. Their
low rank allows inversion, but it is insecure because the same low rank is preserved as a
linear combination of the public key which can be efficiently solved through the Kipnis-
Shamir modeling (KS) of MR.

Although the MR problem is stated for two-dimensional matrices, it can be naturally
extended to d-dimensional matrices. It is particularly interesting to analyze it for three-
dimensional matrices, since rank problems become much harder there. For example, simply
determining the rank of a matrix is difficult for three-dimensional matrices, and it is not
even known the maximum possible rank a matrix may have (see e.g. [HL13a]).

Three-dimensional matrices lead to cubic polynomials. They are less common than
quadratic polynomials in MPKs for two reasons. First, they are larger thus less efficient than
quadratics. But more important, if f is cubic, its differentialDfa(x) := f(x+a)−f(x)−f(a)
is a quadratic map that preserves some of the properties of f . Thus, it is possible to extend
rank analysis techniques from quadratics to cubics targeting the differential, c.f. [MPST17].
Yet one important question remains open: Is this a general property of any cubic map that
dooms any such construction? In this thesis we address this question, by taking a general
perspective not focused on a particular construction.

Main Contributions

In order to close the knowledge gap, we gather the appropriate literature to frame the
discussion of the rank of cubic polynomials. We use the language of tensors that allows for
very natural extensions of key concepts from two to d-dimensional matrices.

We extend the MR problem to three-dimensional matrices and we propose two ways
to solve it, which naturally extend the KS modeling. Interestingly, if the rank is small,
the complexity is even lower than for the quadratic case. However, the rank of a cubic
polynomial in n variables can be larger than n, and in this case the attack is very inefficient.

Our results can be summarized as follows.

• A generalization of the Min-Rank problem to the 3-dimensional case and an algorithm
to solve it

• Applications of the cubic Min-Rank problem to Multivariate Public Key Cryptography

7
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• A new multivariate encryption scheme whose security arguments the point developed
above

We also discuss the relevance of two other typical lines of attack for MPK in the context
of cubic low rank polynomials, namely the algebraic and differential attacks. We show
that the rank of the differential is not necessarily much smaller than the rank of the cubic
polynomial, rendering this line of attack inefficient if the rank is large enough. Similarly,
the algebraic attack is exponential in the rank, thus useless for high rank.

Although our approach is general, we provide a detailed example. We show how to
efficiently construct cubic polynomials over a finite field from a weight three polynomial
over a field extension, extending the so called big field idea. And then, we show that the
rank is preserved by this construction in the sense that, a low rank core polynomial leads
to a set of cubic polynomials with a low rank linear combination.

Part of the work presented in this thesis has been published and presented at the
PQCrypto conference, in April 2018 [BCE+18], with the coauthors John Baena, Daniel
Cabarcas, Karan Kathuria and Javier Verbel. The goal of this thesis is to extend that work.

Outline of the Document

This document is divided in three parts. In Part I we introduce all the necessary background
for the treatment of the forthcoming sections. This includes tensor theory but also some
algebraic geometry and Gröbner bases.

In Part II we discuss the main computational problem considered in this work: the
Min-Rank problem. We introduce the Min-Rank problem in its original quadratic form
and discuss some of the approaches for its solution considered in the literature. Then we
discuss its generalization to the cubic case by using the theory introduced in the first part,
and we show how to approach this computational problem in this new setting.

Finally, in Part III we show the applications of the cubic Min-Rank problem to MPKC,
including our novel encryption scheme HiRaC.
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Chapter 1

Algebraic Preliminaries

1.1 Basic Algebraic Structures

An abelian group is a non-empty set G equipped with some commutative, associative op-
eration + and with an element 0 ∈ G such that for all a ∈ G : a + 0 = a. A commutative
ring R is a set with two different operations +, ·, such that for all a, b, c ∈ G it holds that
a · (b + c) = a · b + a · c and (R,+) and (R, ·) are groups. The identity of the product (·)
is denoted by 1. Finally, a field is a commutative ring F with the property that for every
nonzero a ∈ F there exists an element a−1 ∈ F such that a · a−1 = 1. In this work we focus
solely on finite fields, i.e., fields with a finite number of elements. In the next section we
describe particular properties of finite fields.

1.2 Finite Fields and Field Extensions

Let p be a prime and let Fp denote the ring of integers modulo p. It is easy to show
that this is in fact a field. We denote by Fp[x] the ring of polynomials in the variable x with
coefficients in Fp. This is a ring under usual polynomial addition and multiplication. Notice
that Fp is naturally embedded in Fp[x] as the subring of constant polynomials.

Let h(x) be a polynomial in Fp[x]. We say that h(x) is irreducible if it is not divisible
by a polynomial of degree strictly smaller than deg(h). We define the ideal generated by
h(x), denoted by (h(x)), as the subset of Fp[x] given by the polynomial multiples of h(x).
It can be shown than in fact this is a subring that is closed under multiplication by any
polynomial. The quotient ring of Fp[x] and (h(x)), denoted by Fp[x]/(h(x)), is defined as
the set of equivalence classes of Fp[x] under the relation f(x) ∼ g(x) if and only if h(x)
divides f(x) − g(x). For practical purposes this can be regarded as the set of polynomials
in Fp[x] of degree strictly less than deg(h), with addition and multiplication performed
modulo h(x).

Using the fact that Fp[x] is a principal ideal domain it is easy to prove that (h(x))
is a maximal ideal if h(x) is an irreducible polynomial, and therefore the quotient ring
Fp[x]/(h(x)) is in fact a field, which we denote by Fpn, where n = deg(h). This field, as the
name suggests, has pn elements. Moreover, it is isomorphic as a vector space to Fnp = (Fp)n
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via the mapping that sends a polynomial of the degree at most deg(h) − 1 to the vector
holding its coefficients.

1.3 Vector Spaces

The only vector spaces we will be concerned with in this work are finite-dimensional vector
spaces, therefore, we will not need a general treatment of such. Let F be a field. The vector
space Fn is the additive group of vectors of length n, under point-wise addition. We also
denote by Fn×m the vector space of matrices over F of dimensions n × m, and to extract
the entry in position (i, j) we write A[i, j], or sometimes Ai,j. Additionally, the i-th row of
a matrix A (as a row vector) is denoted by A[i, ·], and similarly A[·, j] for the j-th column
(as a column vector).

Vectors are denoted by bold letters, e.g. u,v, and they are treated as column vectors
by default unless stated otherwise. The vector ei denotes the i-th canonical vector, i.e.
the vector whose only non-zero entry is the i-th one, which is equal to 1. The i-th entry
of a vector u is denoted by u[i], but sometimes we also use the non-bold version of the
corresponding letter with subscript i: ui.

A three dimensional matrix of dimensions n×m×` is an array of elements in F indexed
by tuples (i, j, k), where 1 ≤ i ≤ n, 1 ≤ j ≤ m and 1 ≤ k ≤ `. Notice that this is a
natural extension of the usual (bidimensional) matrices. The vector space of these three-
dimensional matrices is denoted, not surprisingly, by Fn×m×`, and the entry indexed by
(i, j, k) in a matrix A ∈ Fn×m×` will be denoted by A[i, j, k]. We denote by A[i, ·, ·] the two-
dimensional matrix whose entry (j, k) is given by A[i, j, k], and similarly for A[·, j, ·] and
A[·, ·, k].

1.3.1 Rank of a Matrix

We recall the definitions of the rank of a matrix A ∈ Fn×m. The following are equivalent
definitions for rank(A):

Dimension of image: The dimension of the image of the linear map f : Fm → Fn given
by f(x) = Ax

Column rank: The maximal number of linearly independent columns of A

Row rank: The maximal number of linearly independent rows of A

Rank-Nullity Theorem rank(A) = m−dim(K), where K is the kernel of A (i.e. the vector
space formed by u ∈ Fm such that Au = 0)

Determinantal rank: The largest order of any non-zero minor in A

Factorization Rank The minumum number r such that A can be factored as A = CF
where C ∈ Fn×r and F ∈ Fr×m.

Tensor rank: The minumum number r such that A can be written as A =
∑r

i=1 uiv
ᵀ
i ,

where ui ∈ Fn×1 and vi ∈ Fm×1.

12
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Of particular interest to us is the last definition, since it is the one that is more naturally
generalized to matrices of larger dimensions.

1.4 Polynomial Rings

During the rest of this document we assume that F is a finite field of characteristic not 2
nor 3.

We denote by F[x] the ring of univariate polynomials in x with coefficients in F. Also,
if x = (x1, . . . , xn), we denote by F[x] the ring of multivariate polynomials in the variables
x1, . . . , xn with coefficients in F. A non-zero polynomial in F[x] has degree d if each of its
monomials xα1

1 · · ·xαn
n satisfies α1 + · · · + αn ≤ d, and moreover, it is called homogeneous

of degree d if equality holds for all monomials.
In this work we will be mostly dealing with quadratic and cubic polynomials, meaning

that they have degree 2 and 3 respectively. Also, we will focus in homogeneous polynomi-
als, although many of the arguments extend for the affine (i.e. non-homogeneous) case as
well.

Any quadratic homogeneous polynomial f(x) ∈ F[x] has the form f(x) =
∑n

i,j=1 ai,jxixj.
This expression can be written as f(x) = xᵀAx, where A ∈ Fn×n is defined by A[i, j] = ai,j.
We will have more to say about the properties of this matrix in Section 2.3.

1.5 Lifting Polynomials

In this section we explore the relations between polynomial rings over different fields F
and K, where K is a field extension of F. These results will be useful in the context of
Multivariate Public Key Cryptography, where we construct encryption schemes using the so-
called Lifting Idea, which involves polynomial rings over several fields and transformations
among them.

1.5.1 Frobenius Powers

Let K be a field extension of F, where F is a finite field of characteristic q. Recall that every
finite group with t elements satisfies xt = e for all x in the group, where e is the identity of
such. If F is a field, then every nonzero element of F admits a multiplicative inverse and
therefore F∗ := F \ {0} is a multiplicative group with identity 1. Since every finite field has
qn elements where q is its characteristic, we conclude that xqn−1 = 1 for all x ∈ F∗, and
therefore xqn = x for all x ∈ F. In particular, xq = x for all x ∈ Fq (these are the so-called
Field Equations).

Recall that F is a field extension of Fq and therefore a Fq-vector space, the following is
a very important proposition.

Proposition 1.5.1. The function F→ F defined by x 7→ xq is a Fq-linear transformation, that
is, (ax+ z)q = axq + zq for all a ∈ Fq, x, z ∈ F.

This linear transformation is known as a Frobenius Transformation, and its importance
will become clearer in the next few sections.

13
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Linear Combinations of Frobenius Powers

Consider a field extension K of F of degree n. So far we have seen that every element in
α ∈ K can be written as α = b0 +b1y

1 + · · ·+bn−1y
n−1, and this defines the bijective F-linear

transformation

φ : K −→ Fn

b0 + b1y
1 + · · ·+ bn−1y

n−1 7−→ (b0, b1, . . . , bn−1).

We know that the Frobenius transformation X 7→ Xq for X ∈ K is an F-linear transfor-
mation and therefore so is every polynomial of the form

F(X) =
n−1∑
i=0

αiX
qi , (1.1)

implying that the composition φ ◦ F ◦ φ−1 : Fn → Fn is F-linear as well, that is, it is given
by n polynomials, each one homogeneous of degree 1. On the other hand, one can show
that if F : Fn → Fn is a linear transformation, then F(X) = φ−1 ◦ F ◦ φ(X) has the shape
above.

In fact, let α = b0 + b1y
1 + · · · + bn−1y

n−1 ∈ K, then for each i = 0, . . . , n − 1 it is clear
that αqi = b0 + b1 (y1)

qi
+ · · ·+ bn−1 (yn−1)

qi (since bqi = bi), and therefore
α
αq

αq
2

...
αq

n−1

 =


y0 y1 · · · yn−2 yn−1

(y0)q
1

(y1)q
1 · · · (yn−2)q

1
(yn−1)q

1

(y0)q
2

(y1)q
2 · · · (yn−2)q

2
(yn−1)q

2

...
... . . . ...

...
(y0)q

n−1
(y1)q

n−1 · · · (yn−2)q
n−1

(yn−1)q
n−1




b0

b1

b2
...

bn−1

 .

Since φ(α) = [b0, b1, . . . , bn−1]ᵀ, we have that

α = ∆ · φ(α) (1.2)

where α is the vector [α, αq, αq
2
, . . . , αq

n−1
]ᵀ and ∆ is the matrix involving y’s above. It is

easy to see that ∆ is invertible [LN97] and therefore ∆−1 · α = φ(α). If M ∈ Fn×n is the
matrix representing the linear transformation F , then F ◦φ(α) = M ·∆−1 ·α and therefore
φ−1 ◦ F ◦ φ(α) is the dot product between the vectors [y0, y1, . . . , yn−1]ᵀ and M · ∆−1 · α,
which clearly has the shape in Equation (1.1).

We will generalize this result in the following.

1.5.2 Correspondence of Polynomials

Given a nonzero natural number b, any other nonzero natural number a can be written
uniquely as a = c1b

0 + c2b
1 + · · · + c`b

`−1 where 0 ≤ ci < b for all i. We say that (c1, . . . , c`)
is the expansion of a in base b, and we refer to d =

∑`
i=1 ci as the b−Hamming weight of

a. In order to extend the definition we define the b−Hamming weight of a = 0 to be 0. To
illustrate the concept, a has q−Hamming weight 2 if and only if it has the form a = qi + qj.

14



1.5. Lifting Polynomials

Definition. The weight of a monomial Xa ∈ K[X] is the q−Hamming weight of a. A
polynomial F(X) ∈ K[X] is said to be homogeneous of weight d if all of its monomials
have weight d, and it is said to have weight d if all of its monomials have weight at most d.

We aim to prove the following theorem, which will be the heart of what we will develop
next. Recall our notation R := F[x1, . . . , xn].

Theorem 1.5.2. (Correspondence of Polynomials). Let d ≥ 0 be an integer, let K[X]d
denote the set of homogeneous polynomials in K[X] of weight d and let (Rd)

n = Rn
d denote

the set of all functions F : Fn → Fn where each coordinate is a homogeneous polynomial
in F[x1, . . . , xn] of degree d, these sets are naturally F-vector spaces. The following is a well-
defined bijective linear transformation

Drp : K[X]d −→ Rn
d

F 7−→ φ ◦ F ◦ φ−1.

whose inverse is

Lft : Rn
d −→ K[X]d

F 7−→ φ−1 ◦ F ◦ φ.

Before we get into the proof of this theorem, we will need the following lemmas.

Lemma 1.5.3. Let K = F[y]/〈g(y)〉 where g(y) = yn + an−1y
n−1 + · · · + a1y

1 + a0 is an
irreducible polynomial over F. Let

C =


0 0 · · · 0 −a0

1 0 · · · 0 −a1

0 1 · · · 0 −a2
...

... . . . ...
...

0 0 · · · 1 −an−1

 ,
then for any α ∈ K we have that φ (αyj) = Cj · φ(α).

Proof. It suffices to show the result for j = 1 since the general case follows from an iteration
of this case. Let α = b0 + b1y

1 + · · ·+ bn−1y
n−1 ∈ K, then

α · y = b0y + b1y
2 + · · ·+ bn−2y

n−1 + bn−1y
n

= b0y + b1y
2 + · · ·+ bn−2y

n−1 + bn−1(−an−1y
n−1 − · · · − a1y

1 − a0)

= −a0bn−1 + (b0 − bn−1a1)y1 + · · ·+ (bn−2 − bn−1an−1)yn−1

hence φ(α · y) = [−a0bn−1, b0 − bn−1a1, . . . , bn−2 − bn−1an−1]ᵀ, which is the same as C · φ(α)
since φ(α) = [b0, b1, . . . , bn−1]ᵀ.

Lemma 1.5.4. LetQ(X),F(X) ∈ K[X] where F has the shape in equation (1.1). We already
know that in this case φ◦F ◦φ−1 is given by n homogeneous degree 1 polynomials p1, . . . , pn ∈
R. Then, for all X ∈ K we have that

φ (F(X) · Q(X)) =
n∑
i=1

pi (φ(X)) · Ci−1 · φ (Q(X))

15
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Proof. Let x = φ(X), hence

F(X) = F
(
φ−1(x)

)
= φ−1

(
φ ◦ F ◦ φ−1(x)

)
= φ−1 ([p1(x), p2(x), . . . , pn(x)]ᵀ) = p1(x) + p2(x)y + · · ·+ pn(x)yn−1

and therefore, since pi(x) ∈ F, due to the previous lemma we have that

φ (F(X) · Q(X)) = φ
(
p1(x)Q(X) + p2(x)yQ(X) + · · ·+ pn(x)yn−1Q(X)

)
= p1(x)φ (Q(X)) + p2(x)φ (yQ(X)) + · · ·+ pn(x)φ

(
yn−1Q(X)

)
= p1(x)φ (Q(X)) + p2(x)CQ(X) + · · ·+ pn(x)Cn−1Q(X)

=
n∑
i=1

pi (φ(X)) · Ci−1 · φ (Q(X)) .

Proof of Theorem 1.5.2. We begin with the proof that this function is well defined by prov-
ing that for every monomial F(X) = Xa ∈ K[X]d it holds that Drp (F) ∈ Rn

d . Clearly, this
is enough since lemma 1.5.3 ensures that this is true for terms αXa and therefore it is true
for any homogeneous polynomial of weight d since Drp is a composition operation so it is
additively homomorphic. The claim is clear for d = 0 since in this case a = 0 and therefore
the polynomial F(X) = α is constant, as well as Drp(F) ∈ Rn

0 . Let’s assume the claim holds
for d and let’s prove it holds for d+ 1 as well. Since a has weight d+ 1 it can be written as
a = b+ qi where b has weight d so F(X) = Xa = XqiXb. By lemma 1.5.4 with Q(X) = Xb

we have that

φ (F(X)) = φ
(
XqiQ(X)

)
=

n∑
i=1

pi (φ(X)) · Ci−1 · φ (Q(X))

where each pi is a homogeneous degree 1 polynomial, therefore

Drp (F) (x) = φ ◦
(
F
(
φ−1(x)

))
=

n∑
i=1

pi
(
φ
(
φ−1(x)

))
· Ci−1 · φ

(
Q
(
φ−1(x)

))
=

n∑
i=1

pi
(
φ
(
φ−1(x)

))
· Ci−1 · φ

(
Q
(
φ−1(x)

))
=

n∑
i=1

pi (x) · Ci−1 · Drp (Q) (x),

but using the induction hypothesis we see that Drp (Q) (x) is a vector with n homogeneous
polynomials of degree d, so Drp (F) (x) is a vector with n homogeneous polynomials of
degree d+ 1.

Proving that Drp is bijective is not a problem now. Let F ∈ Rn
d , then F = φ−1 ◦F ◦φ is a

polynomial in K[X] (every function K→ K is a polynomial function), which we can write
as

F =
d′∑
`=0

F`

16
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where each F` ∈ K[X] is homogeneous of weight `. Due to what we have proved,
Drp (F`) ∈ Rn

` for each `, since

F = Drp (F) =
d′∑
`=0

Drp (F`)

and F ∈ Rn
d , we conclude that F` = 0 for all ` 6= d and F = Fd ∈ K[X]d. This shows that

F 7→ φ−1 ◦ F ◦ φ is the inverse of Drp.

1.5.3 Computation of Liftings and Droppings in the Quadratic Case

The results from the previous section show that given any polynomial system F of degree d
over K, we can obtain a univariate polynomial of weight d over F by computing Lft(F ), and
viceversa by using Drp. The proof of this fact we gave was not constructive. However, for
computational purposes it is useful to have a more direct way for computing Drp (F) from
F and Drp−1(F ) from F . In this section we provide expressions for achieving this in the
quadratic case. This is well known due to its applications in MPKC, and we dedicate this
section to this matter. In Section 6.1.1 we provide similar formulas for the cubic setting.

Let p(x1, . . . , xn) ∈ R be a quadratic polynomial, then p has the form

p(x1, . . . , xn) =
n∑

i,j=1

aijxixj +
n∑
i=1

bixi + c

and therefore can be written as

p(x1, . . . , xn) = xᵀAx +Bx + c

where x = [x1, . . . , xn]ᵀ, A ∈ Fn×n is the matrix [aij]ij and B ∈ F1×n is the matrix [bi]1i.
It is interesting that we can have the same sort of representation with polynomials in

K[X] having weight at most 2. These have the shape

F(X) =
n∑

i,j=1

αijX
qi−1+qj−1

+
n∑
i=1

βiX
qi−1

+ γ

and therefore can be written as

F(X) = XᵀMX +NX + γ

where X = [Xq0 , . . . , Xqn−1
]ᵀ, M ∈ Kn×n is the matrix [αij]ij and N ∈ K1×n is the matrix

[βi]1i.
For the following we need to recall the invertible matrix

∆ =


y0 y1 · · · yn−2 yn−1

(y0)q
1

(y1)q
1 · · · (yn−2)q

1
(yn−1)q

1

(y0)q
2

(y1)q
2 · · · (yn−2)q

2
(yn−1)q

2

...
... . . . ...

...
(y0)q

n−1
(y1)q

n−1 · · · (yn−2)q
n−1

(yn−1)q
n−1


which satisfies

X = ∆ · φ(X).

17
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Computation of Drp (F) from F

Let F(X) ∈ K[X] be a polynomial with weight at most 2 given by

F(X) = XᵀMX +NX + γ,

we will find an explicit description of the dropping Drp (F) in terms of the matrices M and
N . If x = φ(X), we have that

F
(
φ−1(x)

)
= F(X) = XᵀMX +NX + γ

= (∆ · φ(X))ᵀM (∆ · φ(X)) +N (∆ · φ(X)) + γ = xᵀ∆ᵀM∆x +N∆x + γ.

By factoring each yi from the matrices ∆ᵀM∆ and N∆, we can write

∆ᵀM∆ =
n∑
i=1

yi−1Ai

and

N∆ =
n∑
i=1

yi−1Bi

where Ai ∈ Fn×n and Bi ∈ F1×n, and therefore, if γ = c1 + c2y + · · ·+ cny
n−1

F ◦ φ−1(x) = xᵀ

(
n∑
i=1

yi−1Ai

)
x +

(
n∑
i=1

yi−1Bi

)
x +

n∑
i=1

ciy
i−1

=
n∑
i=1

yi−1 (xᵀAix +Bix + ci) .

Since for all i and particular x1, . . . , xn ∈ F we have that xᵀAix + Bix + ci ∈ F, we
conclude by the definition of φ that

Drp (F) (x) = φ ◦ F ◦ φ−1(x) = [xᵀA1x +B1x + c1, . . . ,x
ᵀAnx +Bnx + cn]ᵀ

Computation of Lft(F ) from F

Let F : Fn → Fn given by n quadratic polynomials p1, . . . , pn ∈ R, where each polynomial
is written as

p(x1, . . . , xn) = xᵀAix +Bix + ci

where Ai ∈ Fn×n and Bi ∈ F1×n. We define γ = c1 + c2y+ · · ·+ cny
n−1 ∈ K and the matrices

M ∈ Kn×n, N ∈ K1×n as

M = (∆ᵀ)−1

(
n∑
i=1

yi−1Ai

)
∆−1

and

N =

(
n∑
i=1

yi−1Bi

)
∆−1.

By reverting the steps in the previous section we can see that Lft(F ) is given by

Lft (F ) (X) = φ−1 ◦ F ◦ φ(X) = XᵀMX +NX + γ.
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Chapter 2

Tensor Theory

2.1 Tensor Product

In this section we introduce the language of tensors, which will be our main object of
study in the subsequent chapters. Tensor theory can be developed from a very abstract
perspective. However, since we are using only finite fields and finitely dimensional vector
spaces, we find it more fruitful for our purposes to take a more explicit but less general
approach.

We begin by defining an operation between two vectors u ∈ Fn and v ∈ Fm, which we
denote by u⊗v, and gives as a result a matrix in Fn×m whose entry (i, j) is given by ui · uj,
i.e. (u ⊗ v)[i, j] = u[i] · v[j]. We refer to this operation as the tensor product of u and v.1

It is easy to check that this operation can be seen also as u⊗ v = uvᵀ.
Similarly, given u ∈ Fn, v ∈ Fm and w ∈ F`, we can define u ⊗ v ⊗w to be the three-

dimensional matrix in Fn×m×` whose entry indexed by (i, j, k) is given by ui · vj · wk, i.e.,
(u⊗ v ⊗w)[i, j, k] = u[i] · v[j] ·w[k].

Tensor theory is an exciting branch of mathematics with many applications to physics,
chemistry, and engineering. Moreover, cryptography has also benefited from tensor theory.
For example, in [Sch12] a new encryption scheme is proposed using the properties of cubic
tensors (unfortunately, such a scheme turns out to be vulnerable to a Min-Rank attack).
Also, more generally, all the multivariate schemes can be considered as tensor-based, since
multivariate polynomials are ultimately some type of tensors (as we will see in Section
2.3). Additionally, a very recent and interesting application of tensor theory to Indistin-
guishability Obfuscation (iO) has been introduced [GJ18]. Such a primitive has proven to
be very hard to construct. In plain terms, iO allows programs to be obfuscated so that they
can be executed on arbitrary data without revealing the internals of the program itself.
The fact that iO can be realized from tensor theory only shows how powerful the tensor
problems can be, and how useful they could be for cryptography.

1 It would be more adequate to call it Kronecker product, since the tensor product is technically reserved
to an operation between vector spaces. However, for simplicity we will keep the term tensor product to
denote the operation between vectors (and as we will see soon, between matrices)
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2.2 Rank for Three-Dimensional Matrices

Recall that the rank of a matrix A ∈ Fn×m can be defined as the minimum number of
summands r required to write A as

A =
r∑
i=1

uiv
ᵀ
i ,

where ui ∈ Fn and vi ∈ Fm for all i = 1, . . . , r. Keeping in mind that uiv
ᵀ
i = ui ⊗ vi,

we can easily generalize this to the three-dimensional case (and in fact, to any dimension)
by letting the rank of a three-dimensional matrix A ∈ Fn×m×` be the minimum number of
summands r required to write A as

A =
r∑
i=1

ui ⊗ vi ⊗wi,

where ui ∈ Fn, vi ∈ Fm and wi ∈ F` for all i = 1, . . . , r. Similarly to the bidimensional
case, We denote this number by rank(A).

And important remark is that rank(A) is always finite, and in fact it is upper bounded
by n2. To see this, begin by noticing that we can always write

A =
∑
i,j,k

A[i, j, k] · (ei ⊗ ej ⊗ ek) =
∑
i

ei ⊗

(∑
j,k

A[i, j, k] · (ej ⊗ ek)

)
.

Now, each bidimensional matrix
∑

j,k A[i, j, k] · (ej ⊗ ek) has rank at most n and therefore
can be written as

∑n
`=1 u

i
` ⊗ vi`, which means that we can write

A =
∑
i,`

ei ⊗ ui` ⊗ vi`.

Since this summation has at most n2 summands, we conclude that rank(A) ≤ n2.
And interesting fact is that many of the computational problems related to the concept

of rank that are trivial in the bidimensional setting become much harder in the three-
dimensional one. Below we illustrate some examples.

• Computing the rank of a bidimensional matrix is simple using Guass-Jordan reduction
and reading the rank from the number of non-zero rows. In the three-dimensional
setting computing the rank is a much harder task, since it essentially involves solving
a minimization problem. In fact, it can be shown that this problem is NP-complete
[Hå90]. Moreover, to the best of our knowledge, there are no efficient algorithms in
the average for computing such rank.

• In particular, constructing a cubic matrix of a desired rank is not an easy task. This
will become a problem for us in Section 4.3.2, where we show experimental data
about the rank of some special matrices. We overcome this issue by using some
characterizations of rank which are much easier to deal with.
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• We know that a matrix in Fn×n can have rank at most n, and moreover, this maximum
is attainable (for instance by the identity matrix). However, determining the maximal
rank attainable by a cubic matrix is a hard, open problem. We have shown above that
this maximum is at most n2, However, it is quite surprising that this maximum is in
fact strictly smaller than n2. The best that is known is that the largest rank attainable
by a matrix in Fn×n×n lies between (1/3)n2 and (3/4)n2 (see [How78, Theorem 7]
for a proof of these bounds, and [Blä14] for some explicit constructions of high-rank
tensors).

• There are many other problems over tensors which turn out to be computationally
hard. See [HL13b] for a good compendium on some of these problems.

As we saw in Section 1.3.1, there are many characterizations for the rank of a matrix
in Fn×n, some of them being more useful in certain contexts than others. However, after
our discussion on the hardness of some computational problems on cubic tensor rank, it
should not be a surprise that obtaining characterizations for the rank in the cubic setting
is a much harder task. Below we will enunciate some of the characterizations that will be
useful for us in upcoming sections.

We begin with this characterization of rank for cubic matrices, which will be important
when we provide a generalization of the Kipnis-Shamir modeling for the Min-Rank problem
in Section 4.2.2 (for a proof, see e.g. [Lan12]).

Theorem 2.2.1. Given a three-dimensional matrix A ∈ Fn×m×`, the rank of A is the mini-
mal number r of rank one matrices S1, . . . , Sr ∈ Fm×`, such that, for all slices A[i, ·, ·] of A,
A[i, ·, ·] ∈ span(S1, . . . , Sr).

Another useful characterization of rank is the one given by the Kruskal rank. The
Kruskal rank of a matrix with columns u1, . . . ,um, denoted by KRank(u1, . . . ,um), is de-
fined as the maximum integer k such that any subset of {u1, . . . ,um} of size k is linearly
independent. The following theorem is a particular case of the known Kruskal’s theorem
[Kru77, Shm16].

Theorem 2.2.2. Let F be a finite field, u1, . . . ,ur ∈ U and t1, . . . , tr ∈ F. Suppose that
A =

∑r
i=1 tiui ⊗ ui ⊗ ui and that 2r + 2 ≤ KRank(t1u1, . . . , trur) + 2 · KRank(u1, . . . ,ur).

Then rank(A) = r.

Finally, it is important to remark that some properties of the quadratric rank still holds
in the cubic setting. A particular property that will be very relevant for us when we study
the Min-Rank attack in the cubic setting in Chapter 6 is that the cubic rank is invariant
under invertible linear transformations. However, to make this more precise we need the
machinery of trilinear forms, which will not be developed until we reach Section 2.3.2.

2.2.1 Symmetric Rank

Another useful notion is the concept of symmetric rank.
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Definition. Let S ∈ Fn×n×n be a three-dimensional symmetric matrix.2 We define the
symmetric rank of S as the minimum number of summands s required to write S as

S =
s∑
i=1

tiui ⊗ ui ⊗ ui,

where ui ∈ Fn, ti ∈ F. If such decomposition does not exist, this number is defined to be
∞. We denote this number by SRank(S).

It is clear by the definitions of rank and symmetric rank that for every symmetric matrix
A ∈ Fn×n×n it holds that rank(A) ≤ SRank(A). It can be shown that these two numbers
coincide in a number of cases, but not always [CGLM08].

The following proposition gives us a sufficient condition over F to guarantee that for all
symmetric matrices in Fn×n×n the symmetric rank is finite. A more general result is shown
in [SgS13, Proposition 7.2].

Proposition 2.2.3. Let F be a finite field with |F| ≥ 3. Then each three-dimensional symmetric
matrix S ∈ Fn×n×n can be written as S =

∑s
i=1 tiui ⊗ ui ⊗ ui, where ui ∈ Fn and ti ∈ F.

2.3 Bilinear and Trilinear Maps

2.3.1 Bilinear Maps

A bilinear map B : Fn × Fn → F is a map that is linear in each argument, that is, B(x0 +
λx1,y) = B(x0,y) +λB(x1,y) for all x0,x1,y ∈ Fn and λ ∈ F, and similarly for the second
coordinate. It is easy to check that if we define the matrix A ∈ Fn×n by A[i, j] = B(ei, ej),
then for all x,y ∈ Fn it holds that

B(x,y) = xᵀAy, (2.1)

which is a more compact representation of B.
We see that a bilinear map can be represented by a matrix B ∈ Fn×n, and it is easy to

see that one bilinear map can come from only one matrix, i.e. bilinear maps and matrices
in Fn×n are in a one-to-one correspondence. To see why this is the case simply notice that if
two matrices can give rise to the same bilinear form, i.e. xᵀA0y = xᵀA1y for all x,y ∈ Fn,
then xᵀ(A0 − A1)y = 0. This implies that the matrix A0 − A1 represents the null bilinear
map, but only the zero matrix can represent such map since any non-zero entry A[i, j]
yields a non-zero value B(ei, ej) = A[i, j] 6= 0.

Given a bilinear map B we can obtain a quadratic homogeneous polynomial f(x) ∈ F[x]
by defining f(x) := B(x,x). In particular, f can be expressed as f(x) = xᵀAx for some
matrix A ∈ Fn×n. Moreover, as we saw in Section 1.4, every such polynomial can be
represented in such way. Nevertheless, unlike the case of bilinear maps, different matrices

2A cubic symmetric matrix is a matrix that is invariant under any permutation of its indexes. A more
precise definition will be given in Section 2.3.2
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A can give rise to the same quadratic polynomial. For instance, if A′ ∈ Fn×n is skew-
symmetric, meaning that A′[i, j] = −A′[j, i] for all i, j, it can be seen that A+A′ represents
the same quadratic polynomial as A. In fact, the converse holds: A0 and A1 represent the
same quadratic polynomial if and only if A0−A1 is an skew-symmetric matrix. In particular,
A and AT represent the same quadratic polynomial.

Even though the quadratic polynomials are not in one-to-one correspondence with ma-
trices in Fn×n, we can obtain such correspondence by restricting Fn×n. Let Sn×n ⊆ Fn×n
denote the set of symmetric matrices, we claim that Sn×n is in one-to-one correspondence
with the quadratic homogeneous polynomials in F[x]. To prove this we just need to show
two things. First, that every quadratic polynomial f(x) can be written as xᵀAx where
A ∈ Sn×n, and secondly that such representation is unique. To see the first fact let us
begin by writting f(x) = xᵀA′x, where A′ ∈ Fn×n (not necessarily symmetric). Define
A = 1

2
(A′ + A′ᵀ) (recall that we are in characteristic not 2 nor 3), then A is symmetric

and xᵀAx = 1
2
(xᵀA′x + xᵀA′ᵀx) = 1

2
(f(x) + f(x)) = f(x). To prove the second claim

simply notice that if A,A′ are symmetric matrices then A − A′ cannot be skew-symmetric
unless A = A′, so two different symmetric matrices cannot represent the same quadratic
polynomial.

Let R2 denote the set of quadratic homogeneous polynomials in F[x]. Also, let us say
that a bilinear map B is symmetric if for all a,b ∈ Fn it holds that B(a,b) = B(b, a), which
is equivalent to the unique matrix representing B being symmetric. We have seen that R2

is in correspondence with Sn×n, and the latter is in correspondence with the symmetric
bilinear maps. Given a polynomial f(x) ∈ R2, we can get the corresponding matrix A ∈
Sn×n by letting A[i, j] = 1

2
fi,j if i 6= j, and A[i, j] = fi,j when i = j, where fi,j ∈ F is

the coefficient of xixj in f . Then, to get the corresponding symmetric bilinear map we
can define B(x,y) = xᵀAy. Interestingly, there is a more direct way of getting this map
from the polynomial f : The symmetric bilinear map B can be computed as B(x,y) :=
1
2

(f(x + y)− f(x)− f(y)). This obervation will prove to be useful when we consider the
differential of the polynomial f .

2.3.2 Trilinear Maps

Once we have the background from Bilinear Maps, extending these to Trilinear Maps is not
very difficult. A trilinear map T : Fn×Fn×Fn → F is a map that is linear in each argument.
Similar to the bilinear case, there is a way to write it as some product related to the values
of T on the canonical vectors. However, since in three dimensions there is no concept of
matrix multiplication as such, we must take a slightly different approach. T can be written
as

T (x,y, z) =
∑

i,j,k∈[n]

xiyjzk · αi,j,k

where αi,j,k := T (ei, ej, ek). Therefore, T can be represented by means of the matrix A ∈
Fn×n×n such that A[i, j, k] = αi,j,k and this representation is unique.

Given a trilinear form T we can obtain a homogeneous cubic polynomial f(x) ∈ F[x]
defined as f(x) := T (x,x,x). Just like in the bilinear case, many different matrices can
give rise to the same polynomial. However, unlike the bilinear case, two matrices represent
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the same polynomial if their difference is skew-symmetric but the reverse direction is not
necessarily true. The definition for skew-symmetric in the three-dimensional case is much
trickier, and it forces us to introduce some concepts before we dive into it.

Let Π` denote the set of permutations in the set {1, 2, 3}. Given π ∈ Π3 and A ∈ Fn×n×n,
we write π(A) to denote the matrix in Fn×n×n resulting of permuting the indexes of A
according to π, i.e. π(A)[i, j, k] = A[π(i, j, k)]. We then say that A is skew-symmetric if
π(A) = (−1)sign(π)A for all permutations π ∈ Π3, where sign(π) is the sign of the permuta-
tion π. Notice that this naturally extends the concept of skew-symmetry for bidimensional
matrices.

Now we show that A and A′ represent the same cubic polynomial if A − A′ is skew-
symmetric. For this it suffices to show that if B is skew-symmetric then B represents the
null polynomial. Let B ∈ Fn×n×n. The coefficient of xixjxk in the polynomial represented
by B is given by

∑
π∈Π3

B[π(i, j, k)]. If B is skew-symmetric, then it holds that B[π(i, j, k)] =

(−1)sign(π)B[i, j, k], so this coefficient is given by B[i, j, k]
∑

π∈Π3
(−1)sign(π). It is easy to

check then via a group-theoretic argument that this coefficient equals 0,3 so the matrix B
represents is the null polynomial.

An important observation is that once we restrict to symmetric matrices, the represen-
tation of a cubic polynomial via a matrix is unique. A matrix A ∈ Fn×n×n is symmetric if
π(A) = A for all π ∈ Π3. A bit more explicitly, A is symmetric if

A[i, j, k] = A[i, k, j] = A[j, i, k] = A[k, i, j] = A[j, k, i] = A[k, j, i]

for all i, j, k. We denote by Sn×n×n the subset of Fn×n×n formed by the symmetric matrices.
To prove that any cubic homogeneous polynomial is representable in a unique man-

ner by a symmetric matrix in Sn×n×n, we consider an arbitrary such polynomial f(x) =∑
i,j,k fi,j,kxixjxk. If we define the matrix A′ such that A′[i, j, k] = fi,j,k, we see that the

associated trilinear form gives rise to the polynomial f . However, A′ might not be symmet-
ric. To turn A′ into a symmetric matrix representing the same cubic polynomial we define
A = 1

3!

(∑
π∈Π3

π(A′)
)
. It is easy to see that this matrix is symmetric and that it represents

the same cubic polynomial. Finally, the fact that the difference of two different symmetric
matrices cannot be skew-symmetric implies that this representation is unique.

As a note, observe that rank(A) ≤ 3! · (rank(A′)) since each π(A′) has the same rank as
A′ and A is the sum of 3! such matrices.

We have shown that in analogy to the bilinear case, the polynomials in R3 are in a one-
to-one correspondence with Sn×n×n, which in turn are in one-to-one correspondence with
the symmetric trilinear maps, defined simply as the trilinears map for which the underlying
matrix is symmetric. An important fact is that given a homogeneous polynomial f of degree
3 we can obtain the corresponding symmetric trilinear form by defining

T (x,y, z) =
1

3!
(f(x + y + z)− f(y + z)− f(x + z)

− f(x + y) + f(x) + f(y) + f(z)). (2.2)

For a cubic homogeneous polynomial f ∈ F[x], we define its rank, denoted by rank(f),
as the rank of the corresponding three-dimensional symmetric matrix.

3 One way to see this is recalling that exactly half of the elements in Πn have sign +1, while the other half
has sign −1
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2.4 Rank is Invariant under Invertible Linear Transforma-
tions

Let S ∈ Fn×n be an invertible matrix, and let A ∈ Fn×n×n. Consider T as the trilinear map
associated to A. If we regard S as a function Fn → Fn, we then can define the function
T ′ : Fn × Fn × Fn → F given by T ′(x,y, z) = T (Sx, Sy, Sz). It can be easily seen that T ′ is
a trilinear form and therefore it has a matrix A′ ∈ Fn×n×n associated to it. In this section
we will prove that rank(A) = rank(A′). This is a natural generalization of the fact that for
quadratic matrices multiplication by an invertible matrix does not change the rank.

We begin by noticing that it suffices to show that rank(A′) ≤ rank(A) since the reverse
inequality can be obtained by applying the same argument and considering S−1 instead.
Let r = rank(A) and write A as A =

∑r
`=1 u` ⊗ v` ⊗ w`. A simple calculation shows that

A′ =
∑r

`=1 Su` ⊗ Sv` ⊗ Sw`, which concludes the claim.
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Chapter 3

Quadratic Min-Rank Problem

In this chapter we introduce the Min-Rank problem in its quadratic version. This computa-
tional problem was introduced by Buss et al. [BFS99] in the context of linear algebra and
proved its NP-completeness.

Many applications of this problem to cryptography have been seen throughout the
years. A zero-knowledge proof system was devised in [Cou01], and many modern con-
structions of code-based schemes using the rank metric have a relation with the Min-Rank
problem (see for example [GRS+]). However, it can be said that its major applications
lie in the domain of cryptanalysis of multivariate public key cryptosystems. The Min-Rank
problem in the context of multivariate cryptography first appeared as part of an attack
against the HFE cryptosystem by Kipnis and Shamir [KS99a]. Some generalizations of this
attack have been seen during the subsequent years, like the generalization to Multi-HFE
[BFP13a] or ZHFE [CSTV17], among others.

The last aforementioned applications will be explored in a bit more detail in Section
5.3. For now we will restrict ourselves to exploring the problem from a purely algebraic
perspective, and we will discuss some algorithms that can lead to its solution.

3.1 Basic Definitions

The Min-Rank problem is defined as follows.1

(Quadratic) Min-Rank problem, decisional version

Given positive integers n, r, k, and matrices M1, . . . ,Mk ∈ Fn×n, determine whether
there exist λ1, . . . , λk ∈ F such that the rank of

∑k
i=1 λiMi is less than or equal to r.

It can be shown that this problem is NP-complete (see for example [HL13b]). A bit
more precisely, this means that, unless the computational classes P and NP are equal,
there is no polynomial-time algorithm that can solve this problem for any choice of param-
eters. However, this does not rule out the existence of some algorithms that can solve this

1 We restrict ourselves to the scenario in which the matrices are square, even though the problem can be
defined for more general rectangular matrices
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problem for specific parameters. In fact, we will discuss below some algorithms that have
a reasonable performance when the rank r is small enough.

We will be mostly dealing with the search version of this problem, stated below.

(Quadratic) Min-Rank problem, search version

Given positive integers n, r, k, and matrices M1, . . . ,Mk ∈ Fn×n, find λ1, . . . , λk ∈ F
such that the rank of

∑k
i=1 λiMi is less than or equal to r, if they exist.

3.2 Some Algorithms

The basic approach to solve the (search) Min-Rank problem is to regard each coefficient λi
as an unknown and then use the fact that the rank of

∑k
i=1 λiMi must be smaller than r

coupled with some characterization of rank to derive some equations whose solution yield
the desired coefficients. These equations will be multivariate polynomials, and solving this
type of equations is not necessarily an easier task at all. However, different approaches
yield different set of parameters for these equations, which may be efficiently solvable in
some specific scenarios.

To distinguish between the actual solutions λi ∈ F and the variables used to set up the
systems of equations, we write A =

∑k
i=1 tiMi where each ti is a variable, so that each

entry of A lies in the polynomial ring F[t1, . . . , tk].

3.2.1 The Kipnis-Shamir Algorithm

We know from the rank-nullity characterization of rank that rank(A) ≤ r if and only if the
dimension of its right kernel is at least n − r. This is equivalent to the existence of n − r
linearly independent vectors in the kernel of A, which by taking the appropriate linear
combinations can be assumed to have the form of the columns of the following matrix

K =



1 0 · · · 0
0 1 · · · 0
...

... . . . ...
0 0 · · · 1
y11 y12 · · · y1,n−r
y21 y22 · · · y2,n−r
...

... . . . ...
yr1 yr2 · · · yr,n−r


(3.1)

where the y’s are unknowns/variables.
Since these vectors are in the kernel of A, this gives rise to the matrix equation A·K = 0,

which can be translated (by looking at each entry) to n · (n− r) quadratic equations in the
t’s and y’s, for a total of k + r · (n− r) variables.
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3.2.2 Guessing Kernel Vectors

As with any system of equations, it is possible to guess some variables in (3.1) and solve for
the others. Because of the structure of this system, it is particularly appealing to guess ker-
nel vectors (i.e. the yi,j variables) and solve the resulting linear system in the ti variables,
as proposed in [GC00] (in fact, since the linear system is very overdetermined, it is enough
to guess k/n kernel vectors). The complexity of such attack is dominated by the guessing
part and depends on the probability of a correct guess. A tight bound on this probability
can be significantly improved by understanding the structure of the solution space, e.g.
by exploiting the interlinked kernel structure [YC05] or by using the subspace differential
invariant structure [MPST14].

3.2.3 Minors Modeling

In [FLdVP08], Faugère et al. introduced the minors method approach to solve the Min-
Rank problem and in [BFP13b] they improved the MinRank attack on HFE using this mod-
eling. This approach uses the characterization of rank using the minors: the rank of A is
at most r if and only if every minor of size r + 1 is zero (recall that a minor of size ` of a
matrix is the determinant of an `× ` submatrix obtained by taking a subset of ` rows and `
columns).

By applying this characterization to the matrix A as defined above, we can derive one
equation for each minor by setting it equal to zero. Each of these equations is homogeneous
of degree r + 1, and the number of (r + 1)-minors in A is

(
n
r+1

)2.

3.2.4 Using Tensor Decomposition

Recall that the rank of A ∈ Fn×n can be defined as the minimum number r such that we
can write A as A =

∑r
i=1 uiv

ᵀ
i . Treating each entry of each ui,vi as variables, we get a

quadratic system of n2 equations and 2 · r · n+ k variables.

3.2.5 Using the Factorization Rank

Recall that rank(A) can be defined as the minumum number r such that A can be factored
as A = C · F where C ∈ Fn×r and F ∈ Fr×n. By column-reducing the matrix C it is
possible to assume that the upper r × r block of C is the identity matrix. We can then let
the coefficients of C and F be unkowns and solve the matrix equation A = C · F .

If A ∈ Fn×n is symmetric then the decomposition boils down to A = RᵀSR where
R ∈ Fr×n and S ∈ Fr×r is an invertible matrix.
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Chapter 4

Cubic Min-Rank Problem

In the previous chapter we focused on the Min-Rank problem in its quadratic version. As
we will see in Section 5.3, this is an important tool in the analysis of some multivariate
cryptographic schemes.

However, it is natural to wonder if this computational problem also makes sense in
the cubic case. In this chapter we show a natural extension of this problem to the three-
dimensional setting by using our generalized definition of rank for these type of matrices
from Section 2.2. Then we introduce some algorithms to solve this problem.

We will see in Section 6 some applications of this problem to the cryptanalysis of mul-
tivariate public key cryptosystems. The main takeaway is that shifting from a quadratic
setting to a cubic one does not rule out completely the possibility of an attack involving the
Min-Rank problem.

4.1 Basic Definitions

The three-dimensional Min-Rank problem is defined as follows.

Three-Dimensional Min-Rank problem, decisional version

Given positive integers n, r, k, and matricesM1, . . . ,Mk ∈ Fn×n×n, determine whether
there exist λ1, . . . , λk ∈ F such that the rank of

∑k
i=1 λiMi is less than or equal to r.

It can also be shown that this problem is NP-complete (See for example [HL13b]).
Just like in the quadratic case, we will be mostly dealing with the search version of this

problem:

Three-Dimensional Min-Rank problem, search version

Given positive integers n, r, k, and matrices M1, . . . ,Mk ∈ Fn×n×n, find λ1, . . . , λk ∈ F
such that the rank of

∑k
i=1 λiMi is less than or equal to r, if they exist.
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4.2 Solving the Three-Dimensional Min-Rank Problem

Our approach for solving the three-dimensional min-rank problem is essentially the same
we took in Section 3.2 for the quadratic version of the problem: we consider each unknown
λi as a variable ti and then use some equivalent definitions of cubic rank to obtain a system
of equations. However, the problem in this setting is that such characterizations are scarce
and also not very friendly computational-wise.

4.2.1 Using the Tensor-Rank Definition

The first natural approach is to use the definition of cubic rank directly. This is akin to
the algorithm we provided in Section 3.2.4. Let A = t1M1 + · · · + tkMk, where the ti’s are
variables (so each entry of A is a linear polynomial in the ti’s). We know by the definition
of rank that rank(A) ≤ r if and only if there exist ui,vi,wi ∈ Fn for i = 1, . . . , r such that
A =

∑r
i=1 ui ⊗ vi ⊗ wi. By regarding each ui,vi,wi as a vector of unknowns we obtain a

system of n3 cubic equations. The total number of variables is 3 · n · r + k.

4.2.2 A Generalization of the Kipnis-Shamir Modeling

We know from Theorem 2.2.1 that A is of rank r, if and only if, there exist rank one
matrices S1, . . . , Sr ∈ Fn×n, such that, for i = 1, . . . , n, A[i, ·, ·] ∈ span(S1, . . . , Sr). Since
each Si matrix is of rank one, we can write it as Si = uiv

T
i for some vectors ui,vi ∈ Fn.

Considering the entries of the ui’s, vi’s, and the linear combination coefficients as variables
yields a cubic system of n3 equations in r(2n) + rn+ k = 3rn+ k variables

r∑
j=1

αijujv
T
j = A[i, ·, ·], for i = 1, . . . , n. (4.1)

To the best of our knowledge, the complexity of solving a system such as (4.1) has not
been studied. It can be seen as a multi-homogeneous system of multi-degree (1, 1, 1, 1),
i.e. a tetra-linear system, and assuming some notion of tetra-regularity, analyze it using
the techniques in [FDS11]. It should be noticed that the techniques in [FDS11] do not
address the semi-regularity inherent to such an overdetermined system. Alternatively, the
techniques in [BFSY05] could be used to establish the asymptotic behavior of an upper
bound of the degree of regularity based on the semi-regularity assumption. Although a
complete asymptotic analysis is outside the scope of this thesis, Table 4.1 shows the growth
of such bound for selected parameters.
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n r vars eqns d-reg cpx
10 10 310 1000 67 699
11 11 374 1331 74 798
12 12 444 1728 81 899
13 13 520 2197 89 1010
14 14 602 2744 97 1123
15 15 690 3375 105 1240

Table 4.1: Complexity of MR by KS modeling for cubic system. For different values of n, KS
yields a cubic system of n3 equations in (3r + 1)n variables (assuming k = n). The d-reg

column gives the degree of regularity for such a semi-regular system without field equations.
The complexity column, gives the log base 2 of

(
vars+d−1

d

)2.8
.

4.2.3 Improvement of KS for r � n

If r � n we can do much better. In that case, for most such rank r matrices A, the
first r slices A[1, ·, ·], . . . , A[r, ·, ·] are linearly independent. In this case, span(S1, . . . , Sr) =
span(A[1, ·, ·], . . . , A[r, ·, ·]). Then, for i = r + 1, . . . , n, A[i, ·, ·] ∈ span(A[1, ·, ·], . . . , A[r, ·, ·]).
Considering the coefficients of the linear combinations as variables yields a system of n2(n−
r) quadratic equations in (n− r)r + k variables

r∑
j=1

αijA[j, ·, ·] = A[i, ·, ·], for i = r + 1, . . . , n. (4.2)

Notice that the converse is not necessarily true. A solution to the system in (4.2) does not
necessarily implies the existence of the rank one Si matrices, neither that A has rank r.
However, this is a very overdetermined system, hence a solution is very unlikely, unless
indeed A has rank r.

The system in (4.2) has O(n3) quadratic equations in O(n) variables. Since the number
of degree two monomials is O(n2) the system can be solved by relinearization at degree 2,
which reduces to solving a O(n2) square matrix. Notice that this is much faster than the
KS approach in the two-dimensional case since in this case we have many more equations.
This is very surprising, since it essentially says that the Min-Rank problem becomes easier
in degree 3 if the rank is small enough.

4.3 Slices and Differentials

It is reasonable to wonder if a cubic instance of the Min-Rank problem can be transformed
into a quadratic instance, for which the algorithms from Section 3 can be applied. One way
to achieve this is by taking the slices M`[i, ·, ·] of each matrix in the instance. In this section
we explore how viable this approach is by first showing that it is directly related to the
concept of the differential of a polynomial. Then we show that in general this differential
does not necessarily preserve the rank from the original instance, which will render this
approach useless for most of the cases.
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4.3.1 Relation between Slices and Differentials

Let A ∈ Fn×n×n be a symmetric matrix and let f(x) ∈ F[x] be the homogeneous cubic
polynomial represented by A, i.e. f(x) =

∑
i,j,k A[i, j, k] · xixjxk. We begin by showing

that the slices A[i, ·, ·] have a direct relation with the differential of f . Such differential is
defined by Daf(x) := f(x + a)− f(x)− f(a).

In general, if f is a cubic homogeneous polynomial, then Daf(x) is a quadratic polyno-
mial in x, but not necessarily homogeneous. Let us write Daf(x) = g(x) + h(x) where g is
quadratic homogeneous and h is linear.1 On the other hand, consider the symmetric matrix
A′ ∈ Fn×n representing the polynomial g(x). As we saw in Section 2.3.1, the symmetric bi-
linear map B(x,y) associated to A′ can be computed as B(x,y) = 1

2
(g(x+y)−g(x)−g(y)).

Moreover, using the fact that g(x) = Daf(x) − h(x) and that h(x) is linear, it can be ob-
tained that B(x,y) = 1

2
(Daf(x+y)−Daf(x)−Daf(y)). Finally, by unfolding the definition

of the differential in terms of f , we see that

B(x,y) =
1

2
(f(x + y + a)− f(x + y)− f(x + a)− f(y + a) + f(x) + f(y) + f(a)).

On the other hand, if T (x,y, a) is the trilinear form associated to the matrix A, we know
from Section 2.3.2 that T can be computed from f as

T (x,y, a) =
1

3!
(f(x + y + a)− f(x + y)− f(x + a)− f(y + a) + f(x) + f(y) + f(a)).

By joining these two expressions we obtain that B(x,y) = 3 · T (x,y, a). When translat-
ing this in terms of slices, keeping in mind that A[i, j, k] = T (ei, ej, ek), we obtain that
A[i, j, k] = 1

3
B(ei, ej). In other words, this means that the bidimensional matrix repre-

senting the quadratic homogeneous part of the differential of f at a = ek is precisely
the slice A[·, ·, k] up to a factor of 3. For the general case a ∈ Fn we simply notice that
Daf(x) =

∑n
i=1 aiDeif(x), so the matrix representing the quadratic homogeneous part of

Daf(x) is given by
∑n

k=1 ak · A[·, ·, k].
Notice that in the previous argument we used the fact that A was symmetric to argue

that A was the matrix representing the symmetric trilinear form T . For a general A, we
would have that 1

3!

(∑
π∈Π3

π(A)
)

is the actual symmetric matrix representing the trilinear
form T , so the argument would be applied to this matrix instead.

4.3.2 Rank of the Differential

Assume that A ∈ Fn×n×n is a symmetric matrix. From the previous section we see that
the rank of the quadratic part of the differential of a cubic polynomial f at a is the rank
of
∑n

k=1 ak · A[·, ·, k]. Moreover, the latter has rank upper-bounded by rank(A). This holds
since, if A =

∑rank(A)
`=1 u` ⊗ v` ⊗w`, then

n∑
k=1

akA[·, ·, k] =
n∑
k=1

ak

rank(A)∑
`=1

(u` ⊗ v`) ·w`[k] =

rank(A)∑
`=1

(u` ⊗ v`) ·

(
n∑
k=1

akw`[k]

)
.

1 The free coefficient of Daf(x) must be equal to 0 since Daf(0) = f(0 + a)− f(0)− f(a) = 0
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All in all, we conclude that the rank of the differential is upper-bounded by the rank of
A, so taking the differential cannot increase the rank. This shows that a good strategy for
solving the three-dimensional Min-Rank problem when r � n is taking the differential of
each of the matrices of the instance and solving the resulting quadratic min-rank problem
(however, recall from Section 4.2.3 that in this case it is more efficient to run directly on the
cubic instance). Nevertheless, this is prohibitive if r is close to or greater than n, and if the
differential happens to have a rank close to this. It is natural to ask then if this is the case:
Is the rank of the differential much smaller than the rank of the original three-dimensional
matrix? In what is left of the section we will answer this question heuristically by showing
experimental results that indicate that in general the rank of the differential tends to stay
close to the original rank. This shows that in general, transforming a cubic instance of the
min-rank problem into a quadratic one by applying the differential does not necessarily
yield an easier computational problem.

Lower Bound for the Rank of the Differentials

The first thing to note is that a general good lower bound cannot be provided, since there
are cubic matrices for which the rank of the differential drops by an order of a square root.
For example, let A′ ∈ Fr×r×r be a matrix of maximal rank. As we saw in Section 2.2, it
is known that the rank of such a matrix is of the order O(r2). Then, consider the matrix
A ∈ Fn×n×n given by A[i, j, k] = A′[i, j, k] if i, j, k ≤ r, and 0 otherwise. It can be seen
that rank(A) = rank(A′) = O(r2). However, a slice of A is just a matrix with only an r × r
non-zero block in the upper-left corner, so its rank is upper-bounded by r. As we will see
in Section 6.3, this is precisely the situation in the cryptosystem HFE, and this is the reason
why this encryption scheme, even in its cubic form, is vulnerable to a quadratic Min-Rank
attack.

Given the above, our analysis must be probabilistic, in the sense that we should consider
the average case instead of the worst case. Therefore, we formulate our question as follows:
given a random homogeneous cubic polynomial f ∈ F[x] of rank r, we want to estimate
the rank of the quadratic part of its differential Daf(x) = f(x + a)− f(x)− f(a).

The first and main problem that we face in our analysis is: given an integer r, how
can we generate random homogeneous cubic polynomials of rank r? Or equivalently, how
can we generate random symmetric three-dimensional matrices of rank r? To address these
questions, we use the concept of symmetric rank. We then choose random polynomials and
use Kruskal’s theorem to guarantee that those polynomials have certain symmetric rank.

By Proposition 2.2.3, if |F| ≥ 3, any homogeneous cubic polynomial f can be written
as
∑k

i=1 tiui(x)ui(x)ui(x), where each ui(x) is a homogeneous linear polynomial and k de-
pends on f . Furthermore, the symmetric rank of a homogeneous cubic f ∈ F[x], denoted
by SRank(f) and defined as the symmetric rank of its symmetric matrix representation,
does exist.

The symmetric rank is a good parameter to consider because it is a bound for the rank
of the differential.

Proposition 4.3.1. Let f ∈ F[x] be a homogeneous cubic polynomial. If g is the quadratic
homogeneous part of Dfa(x), then rank(g) ≤ SRank(f).
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Proof. If f can be written as f(x) =
∑r

i=1 tiui(x)ui(x)ui(x), then for any a ∈ Fn the
quadratic part of Dfa(x) is

∑r
i=1 3tiui(a)ui(x)ui(x).

Let U = Fn. Clearly, each symmetric matrix A ∈ Fn×n×n with symmetric rank r can be
written as a sum of exactly r terms of the form tu⊗ u⊗ u, where t ∈ F− {0} and u ∈ U .

Let Sr be the function which outputs A =
∑r

i=1 tiui⊗ui⊗ui, for ti ∈ F−{0} and ui ∈ U .
By Proposition 2.2.3, if |F| ≥ 3, then each symmetric matrix A ∈ Fn×n×n with symmetric
rank equal to r is in the codomain of Sr. But some symmetric matrices having symmetric
rank less than r can also be there.

Now we will use Theorem 2.2.2 to argue that if ti ∈ F − {0} and ui ∈ U are chosen
uniformly at random, then with high probability the corresponding output A of Sr has
symmetric rank equal to r. Moreover, by Kruskal’s theorem with high probability rank(A) =
SRank(A). The argument is as follows. Suppose 2 ≤ r ≤ n. If u1, . . . ,ur ∈ U are chosen
uniformly at random, then with high probability a matrix with columns u1, ...,ur has full
rank. If a matrix with columns u1, . . . ,ur ∈ U is full rank, then KRank(u1, . . . ,ur) = r and
KRank(t1u1, . . . , trur) = r, for any t1, . . . , tr ∈ F − {0}. In this case, by Theorem 2.2.2 the
corresponding output A of Sr is such that rank(A) = SRank(A) = r.

We experimentally analyze the behavior of the rank of the differential of a polynomial
that is the output of Sr2. The experimental results are shown in Figure 4.1, where each
curve represents the percentage of times that a rank is obtained, over 100,000 iterations.
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Figure 4.1: For different values of q, CubicRank, and n, a polynomial f is chosen according to
SCubicRank, the rank(Dfa) is computed for a random a ∈ Fn. Each graph represents the

percentage of times that a particular value rank(Dfa) is obtained over 100,000 iterations.
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Chapter 5

Multivariate Public Key Cryptography

In this chapter we introduce basic ideas from Multivariate Public Key Cryptography, in-
cluding basic constructions and examples. This will give the necessary context to the New
Alternatives we propose later on in this work.

5.1 Preliminaries on Cryptography

We consider it appropriate to give a context on the general problem that is being addressed
with MPKC, which is allowing a secret communication between two parties (usually re-
ferred as Alice and Bob).

In this section, we exhibit the problem of secret communication and the solution from
Public Key Cryptography. We stress that we are going to keep an informal speech during
this section, and we refer the reader to formal definitions when needed.

5.1.1 Public Key Cryptography

Suppose that Alice have a message m and she wants Bob to learn this message while
guaranteeing that no one but Bob will be able to do so.

To solve this problem, suppose we have a function P such that

1. P is one-to-one1

2. P is very easy to evaluate for Alice (and in general for anyone who wishes to send a
message to Bob)

3. P is not easy to invert for anybody who simply knows P

4. Bob possesses some secret information that allows him to efficiently invert this func-
tion2

1we will see that many of our constructions satisfy a more relaxed condition which can be stated as being
“few-to-one”, that is, every element in the range of the function has “few” preimages.

2from the properties it can be seen that necessarily this secret information cannot be found from P since
in this case, anyone with access to this function would be able to invert just like Bob.
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Alice

m

Bob

c
m = P−1 (c)

P(m) = c

Figure 5.1: Protocol that allows Alice send her message to Bob securely

The first three properties ensure that P is a One-way Function, and the last one that it
is a Trapdoor Function. See [KL07] for details on these concepts.

What Alice can do in order to solve her issue is evaluating m at P, obtaining P(m).
Then she can send this value to Bob, due to our assumptions about P, no one is able to
learn m from this value. Once Bob receives this value, he can use his secret information to
invert the function and therefore finding m. Figure 5.1 pictures this idea.

We now introduce some notation common in Cryptography

• The function P described above, along with all other information necessary to eval-
uate it are often referred to as the Public Key, since this is “public” for anyone who
wishes to send a message to Bob3;

• The secret information possessed by Bob is the Secret Key;

• Every possible message m in the domain of P is called a Plaintext, and every element
of the range of this function is known as a Ciphertext;

• Encryption is the act of evaluating the function P and Decryption is the act of in-
verting it.

The general way in which these trapdoor functions are constructed is by means of a
procedure Gen that takes the secret information sk and outputs the correspondent trap-
door function P that can be inverted with the secret key sk. It is clear that the procedure
Gen cannot be invertible because in this case one would be able to recover the secret infor-
mation from the function, therefore violating its properties.

Example. (RSA) Consider two large prime numbers p and q, e some positive integer and
d such that ed ≡ 1 mod φ(N) with N = pq, where φ is the Euler’s totient function. With
this setting basic number theory can show that for every integer m between 0 and n− 1 we
have that

(me)d ≡ med ≡ m1 mod N.

Let P be the function that takes m and raise it to the e-th power and takes modulo N . It is
widely assumed that computing m mod N from P(m) is a difficult task without additional

3if you are familiar with cryptography, then you probably regard the public key as some parameter pk
which is fed to a function Encpk(·); here we regard the public key P as this function itself, which is an
equivalent and more convenient approach

42



5.2. Multivariate Public Key Cryptosystems

information, but as we have seen, we can achieve this by having knowledge of d since
we simply compute m ≡ P(m)d mod N . If we keep d secret, then only someone with
this information will be able to decrypt; moreover, we found d by means of p and q, so at
the end what must be kept secret is the prime factorization of N , so the security of this
cryptosystem heavily relies on the problem of factoring large numbers. See [Sho05] for
details on this cryptosystem.

5.1.2 Post-Quantum Cryptography

The development of Quantum-Computers is a very big research field with a lot of invest-
ment, and expert estimate that within the next two decades these computers could be built.
This may seem like good news, but this is a concern for the security of communications.

The RSA example we saw before is not merely a theoretical Public Key Cryptosystem,
many of our communications today actually use this cryptosystem to ensure privacy. As we
noticed there, an attacker would be able to learn the secret information if he can factor
large numbers into primes. Even though this is widely believed to be a hard problem in a
classical computers, an algorithm for quantum-computers developed by Peter Shor [Sho99]
can perform this task in only polynomial time.

The latter shows that cryptosystems based on problems like factoring (or finding dis-
crete logarithms, which is another widely used technique and can be also broken with
Shor’s algorithm) will not be secure in the near future, hence, we need to develop new
schemes whose security rely on different problems that cannot be solved efficiently even
by a quantum computer. One of these problems is the MQ-problem, related to polynomial
system solving. We will discuss this in detail.

5.2 Multivariate Public Key Cryptosystems

During the rest of this work F will denote a finite field with q elements (q a prime number)
and K will denote a field extension of F of degree n. We denote by R≤d the set of polyno-
mials in R = F[x1, . . . , xn] of degree at most d. Elements in R≤2 are known as quadratic
polynomials. A function F : Fn → Fm is called a regular function if it is given by m multi-
variate polynomials (actually, one can easily prove that every function Fn → Fm is regular
once we impose the relations xqi = xi, see [Esc16]), and it is quadratic if each component
is a quadratic polynomial.

Consider the following computational problem.

MQ Problem Let f1, . . . , fn ∈ R be quadratic multivariate polynomials chosen uniformly
at random. Find (a1, . . . , an) ∈ Fn, if there is any, such that for all i = 1, . . . , n

fi(a1, . . . , an) = 0.

There are many reasons to believe that this problem is hard, even for quantum com-
puters. From the theoretical point of view, it has been proved that the problem of deciding
whether or not a given polynomial system has a solution or not is NP-complete [GJ90].
This is valuable since we do not expect NP to be equal to P even in the quantum model of
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computation. However, there may be NP-complete problems whose difficulty in the aver-
age case is not that hard. Nonetheless, this is not the case with the MQ problem since there
are not known better techniques for polynomial systems over finite fields than the general
ones we illustrated in the introduction which make use of Groebner bases. It can be shown
that for random systems this approach has an expected exponential complexity in n (see
for example [Spa12]). Moreover, nowadays there are no known polynomial-time quantum
algorithms to solve the problem.

This problem will be the starting point for us to build the so-called Multivariate Public
Key Cryptosystems. For these schemes, the trapdoor function is a function P : Fn →
Fm where each coordinate is given by a polynomial, and the secret key is some secret
information allowing us to invert this function.

Assumption Given F : Fn → Fn defined by n quadratic polynomials chosen uniformly at
random and given c in the range of F , it is difficult to find a ∈ Fn such that F (a) = c.

Remark. To find such a one must solve the system of equations p1(x) = c1, . . . , pn(x) = cn,
where the pi’s are the quadratic polynomials defining F and c = (c1, . . . , cn). By defining
the quadratic polynomials qi(x) := pi(x)− ci, this is the same as solving the system q1(x) =
0, . . . , qn(x) = 0. This may look the same as the MQ problem, but the difference here is
that the qi’s are not chosen at random. For instance, we know a priori that the system
possesses at least one solution, which is not the general case in the MQ problem. However,
experimental evidence shows that it does not hurt to assume that the latter problem is
difficult too, which is the assumption we need to make in order to build our trapdoor
functions.

What we have so far is that if we pick a random function from the set of all quadratic
regular functions Fn → Fn, the chances are that this function is not easy to invert. More-
over, another reasonable assumption is that regular functions Fn → Fn chosen at random
are very likely to be “few-to-one”.

In order to construct trapdoor functions, we only need to describe a generation pro-
cedure Gen that picks some secret information and outputs a regular quadratic function
which looks like random and is easy to invert using this secret information.

In what follows we describe the generation procedure that outputs regular functions
easy to invert with the secret information. Notwithstanding, there is not a known way
today we can ensure that these functions are easy to invert only if the secret information
is possessed (which is the property we need on a trapdoor function). In fact, for many
constructions today either the generation procedure is invertible (that is, the secret infor-
mation can be recovered from the regular function) or the behavior of the resulting regular
functions is not like that of random ones, resulting in easier to invert functions.

As a final note, we extend our constructions to trapdoor functions Fn → Fm, where m
may be different from n. The observation is that m must be at least n since otherwise our
functions would not be “few-to-one”. On the other hand, if m is very large with respect to
n, theory developed in [Bar04] shows that our systems may be easier to solve, yet it is not
harmful if m = O(n).

Also, note that although the assumption is stated for quadratic polynomials, it can be
easily generalized for degree d ≥ 2 polynomials without loss on the hardness. Given this,
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we will not restrict ourselves to quadratic polynomials in the exposition of the general
constructions.

5.2.1 First Reduction: Bipolar Construction

Definition. Given a regular function F : Fn → Fm, invertible linear transformations S :
Fn → Fn and T : Fm → Fm, we define the bipolar construction of F, S and T as the regular
function P : Fn → Fm given by P = T ◦ F ◦ S.

It can be easily seen that if each polynomial in F has degree d, then each polynomial in
P also has degree d.

Assume now that we have a regular function F : Fn → Fm with the following property:
Any equation F (x1, . . . , xn) = (c1, . . . , cn) where (c1, . . . , cn) ∈ F (Fn) can be efficiently
solved4. Clearly, F would not serve as a public key itself since anyone is able to invert it.
However, we can create a MPK Cryptosystem from F by choosing uniformly at random two
linear transformations S : Fn → Fn and T : Fm → Fm and considering P = T ◦ F ◦ S,
the bipolar construction of F, S and T . The idea with this construction is that S mixes
the variables and T mixes the equations, therefore hiding the structure of the function F .
Figure 5.2 shows how the process works.

An important property of this construction is that someone who knows F , S and T
can easily invert any equation of the form P (x1, . . . , xn) = (c1, . . . , cn) where (c1, . . . , cn) ∈
P (Fn) since P−1 = S−1 ◦ F−1 ◦ T−1 and we are assuming that F is easy to invert (here, we
must notice that T−1(c1, . . . , cn) ∈ F (Fn)). Therefore, it makes sense to consider F, S and
T as secret information and P as the public information. From the security point of view,
we want to make sure that someone who simply sees P is not able to recover F, S and T ,
which is some kind of “factoring problem” for mappings. This problem is assumed to be

4We restrict ourselves to only inverting the function where there is indeed a preimage of the element
involved. This makes sense since we only want to decrypt valid ciphertexts. Some of the cryptosystems we
will encounter only allow us to invert in this situation, and they would fail to decrypt if a non-valid ciphertext
is asked for decryption
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Figure 5.2: Construction of MPK Cryptosystems from easy-to-invert regular functions
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hard in general, and is closely related to the Jacobian conjecture on Invertible Polynomial
Maps. Unfortunately, there may be some F ’s for which this problem is not difficult, and
this may lead to attacks like the Min-Rank attack.

An important concern is that we cannot ensure that the only way to invert the function
P is by making use of F , S and T . For instance, if F is linear then P is linear as well, and
then of course everyone can invert the function P without having any knowledge of F , S
nor T . It is clear that one would not take F to be linear for this construction, but deeper
conditions can be found, for example, F is easy to invert if it has a low falling degree since
Lazard’s algorithm finishes at an early stage, however, bipolar constructions inherit the
falling degree from F and hence P would be easy to invert for anyone as well (see [Esc16]
for the details on this). The precise requirement for F so that the bipolar construction P is
not easy to invert is not clear. In fact, many of the defeated MPK Cryptosystems are in such
a status due to the fact that the function P has a low falling degree and therefore it is easy
to invert.

In any case, in many scenarios this can be assumed to be a hard problem and therefore
it makes sense to look at easy-to-invert regular functions F : Fn → Fm to build trapdoor
functions by doing the Bipolar Construction, and now we focus on the problem of finding
such F ’s. We stress that we do not know yet a sufficient condition on F that guarantees
that the bipolar construction is difficult to factorize, or more generally, to invert.

5.2.2 Second Reduction: Lifting Idea

According to the previous section, now we need to focus on building regular functions
F : Fn → Fm that are easy to invert. The method we will use for this is known as the lifting
idea, and involves an extension field of F and univariate polynomials over this extension.

Consider a field extension K of F of degree n, and consider φ : K → Fn to be the
natural linear transformation between these vector spaces (see Chapter 1 for more details
on this). Recall our notation R := F[x1, . . . , xn]. Given a nonzero natural number b, any
other nonzero natural number a can be written uniquely as a = c1b

0 + c2b
1 + · · · + c`b

`−1

where 0 ≤ ci < b for all i. We say that (c1, . . . , c`) is the expansion of a in base b, and
we refer to d =

∑`
i=1 ci as the b−Hamming weight of a. In order to extend the definition

we define the b−Hamming weight of a = 0 to be 0. As an example, notice that a has
q−Hamming weight 2 if and only if it has the form a = qi + qj.

Definition. The weight of a monomial Xa ∈ K[X] is the q−Hamming weight of a. A
polynomial F(X) ∈ K[X] is said to be homogeneous of weight d if all of its monomials
have weight d, and it is said to have weight d if all of its monomials have weight at most d.

The importance of the concept of weight is that it corresponds to degree on multivariate
polynomials under what we call Lifting and Droppings, as we can see in the following
theorem.

Theorem 5.2.1. (Correspondence of Polynomials, restated). Let d ≥ 0 be an integer,
let K[X]d denote the set of homogeneous polynomials in K[X] of weight d and let (Rd)

n =
Rn
d denote the set of all functions F : Fn → Fn where each coordinate is a homogeneous

46



5.2. Multivariate Public Key Cryptosystems

polynomial in F[x1, . . . , xn] of degree d, these sets are naturally F-vector spaces. The following
is a well-defined bijective linear transformation

Drp : K[X]d −→ Rn
d

F 7−→ φ ◦ F ◦ φ−1.

whose inverse is

Lft : Rn
d −→ K[X]d

F 7−→ φ−1 ◦ F ◦ φ.

The proof of this theorem can be found in Section 1.5.2.
The names Lft (lifting) and Drp (dropping) arise from the following commutative dia-

gram, which illustrates the correspondence.

K F // K
φ
��

Drp(F)

��

Lft(F )

OO

Fn F //

φ−1

OO

Fn

Clearly, F is invertible if and only if F is, so we can focus now on finding easy-to-invert
univariate polynomials F(X) ∈ K[X] with weight at most d. Even though this correspon-
dence exists for degree higher than 2, it has been used so far only for the quadratic case.
Section 1.5.3 shows that this procedure can be done very efficiently.

5.2.3 General Construction

To sum up, we describe the general procedure to build a trapdoor function P : Fn → Fm
where m = tn.

1. Choose some secret invertible linear transformations S, T1, . . . , Tt : Fn → Fn.

2. Find t univariate polynomials F1, . . . ,Ft ∈ K[X] having weight at most d such that the
system of equations (F1(X) = Y1, . . . ,Ft(X) = Yt) where Yi ∈ Fi(K) can be efficiently
solved.

3. The trapdoor function is P : Fn → Fm given by P = (P1, . . . , Pt) with Pi = Ti ◦
Drp (F) ◦ S.

This construction is depicted in Figure 5.3.
So far we have considered degree d polynomials, with d ≥ 2; however, many of the con-

structions so far involve only quadratic polynomials. This makes sense due to the following
considerations.

• There are
(
n+d−1

d

)
= O(nd) monomials of degree d, so we need O(mnd) elements from

the field F to store m polynomials in R of degree d. If d = 2 then this is a manageable
size, by raising d to a much larger value one gets sizes beyond practical applications.5

5Nevertheless, d = 3 is still manageable, which is the starting point for our contributions in the next
section.
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• In order for this construction to be efficient one needs to be able to compute Drp(F)
from F in an efficient manner. This is well known in the quadratic case, as we
described in Section 1.5.3.

K (F1,...,Ft)
// Kt

φ×···×φ
��

Fn S //

Trapdoor Function

33Fn (Drp(F1),...,Drp(Ft))
//

φ−1

OO

(Fn)t
T1×···×Tt // Fm

Figure 5.3: General Construction of Multivariate Trapdoor Functions

5.3 Examples: HFE and ZHFE

We now discuss two examples of MPK Cryptosystems: Hidden Field Equations (HFE) and
ZHFE. The former was proposed by Patarin in 1996 [PG97], and was a good alternative
until Kipnis and Shamir proposed the so-called Min-Rank attack [KS99b]. It was a theoret-
ical attack back then, but subsequent work by L. Perret et al [BFP13a] improved this attack
for any set of practical parameters.

On the other hand, ZHFE was proposed as an alternative to avoid the Min-Rank attack.
It was presented in 2014 by Porras et al. [PBD15] and it was well received by the MPKC
community for its new and creative idea. Unfortunately, it had efficiency issues in its very
beginning. Almost one year after its release, an improvement on the efficiency of ZHFE
and a security analysis based in the min-rank were published [BCE+16, PS16]. Although
the former gave a hope on the future of ZHFE as a usable primitive, the latter showed a
weakness on the cryptosystem that led to the necessity of reformulating it.

5.3.1 HFE

Recall that we need to find polynomials F1(X), . . . ,Ft(X) ∈ K[X] which are, in conjunc-
tion, easy to invert. In finite fields, just like in the field of real numbers, we have algorithms
that can efficiently find the roots of a given univariate polynomial if its degree is small
enough (e.g. Berlekamp and Cantor-Zassenhaus algorithms, see [LN97]). Given this, it is
natural to consider low degree polynomials since these are easily invertible.

Definition

In HFE, the core function is given by a low degree polynomial of weight two. More pre-
cisely, fix a parameter D and consider a polynomial of the form

F(X) =
∑

qi+qj≤D

αijX
qi+qj
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(for illustrative reasons we assume F is homogeneous). If D is low enough, this function is
easy to invert. The trapdoor function is built then by choosing some secret invertible linear
transformations S, T : Fn → Fn and computing P = T ◦ φ ◦ F ◦ φ−1 ◦ S.

Security Analysis

The HFE Cryptosystem has a vulnerability against what is known as a Min-Rank attack.
This attack reduces the problem of finding the secret key6 to the Min-Rank problem. Since
we will encounter the same type of attack in the next chapter when we generalize it to the
cubic setting, it is worth to see the most relevant aspects of it.

We begin by writing the polynomial F as

F(X) =
(
Xq0 Xq1 · · · Xqn−1)



∗ · · · ∗ 0 · · · 0
... . . . ...

... . . . ...
∗ · · · ∗ 0 · · · 0
0 · · · 0 0 · · · 0
... . . . ... . . . ...
0 · · · 0 0 · · · 0




Xq0

Xq1

...
Xqn−1



where only the r × r square on the top left of this matrix is nonzero (r = blogqDc). This
should look familiar to the representation of quadratic forms in several variables but using
the “variables” Xqi instead (recall that Xqn = X for any particular X ∈ K, so we only
need to consider these powers up to Xqn−1). Let us denote the matrix in the middle by
M ∈ Kn×n. Notice that M has a low rank r (since D is small, by construction).

Now, recall from Section 1.5.3 that if Ai ∈ Fn×n is the quadratic matrix representing
the i-th component of Drp(F) = φ ◦ F ◦ φ−1, then ∆ᵀM∆ =

∑n
i=1 y

i−1Ai. Moreover, it is
easy to check that the effect of composing with the matrix S ∈ Fn×n from the right gives
φ ◦ F ◦ φ−1 ◦ S = (∆S)ᵀM(∆S).7 Finally, the matrix Pi representing the i-th component of
P = T ◦ φ ◦ F ◦ φ−1 ◦ S is given by Pi =

∑n
j=1 T [i, j] · (SᵀAjS).

As an important consequence, we see that the following relation holds

(∆S)ᵀM(∆S) =
n∑
i=1

λiPi, (5.1)

where (λ1, . . . , λn) = (y0, . . . , yn−1)T−1. This holds since

n∑
i=1

λiPi =
n∑
i=1

λi

(
n∑
j=1

T [i, j] · (SᵀAjS)

)
=
∑
j

SᵀAjS
∑
i

λiT [i, j] =
∑
j

yj−1SᵀAjS.

The important observation about Equation (5.1) is that the left-hand side (and there-
fore, the right-hand side) has the same rank as M , which is at most r and that has to be

6 In fact, an equivalent secret key is recovered, which is a secret key that may not be the one used originally
to create the given public key, but that also works for decryption. This will not matter much for our discussion.

7This follows from the fact that composing a quadratic polynomial represented by a matrix A with a linear
transformation S gives again a quadratic polynomial represented by SᵀAS
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low in order to keep decryption efficient. This gives an instance of the Min-Rank problem
that can be tackled using the techniques from Chapter 3. The first negative implication
of this property is that the trapdoor functions from HFE are distinguishable from random
regular functions, which is undesirable. Secondly, this attack allows an attacker to find the
coefficients λ1, . . . , λn and it turns out that this is enough to build an equivalent secret key
(for the details see for example [BFP13b]).

5.3.2 ZHFE

It is worth mentioning ZHFE, which appeared in the literature as an alternative to overcome
the Min-Rank attack. The basic construction for the core polynomial is as follows. Just like
in HFE, we begin by fixing a small parameter D that will allow us to invert. Then we
look for scalars α1, . . . , α2n, β1, . . . , β2n ∈ K and two weight 2 polynomials F(X) and F̃(X)
satisfying that the polynomial

Ψ(X) = X
(
α1F q

0

+ · · ·+ αnF q
n−1

+ β1F̃ q
0

+ · · ·+ βnF̃ q
n−1
)

+

Xq
(
αn+1F q

0

+ · · ·+ α2nF q
n−1

+ βn+1F̃ q
0

+ · · ·+ β2nF̃ q
n−1
)
,

has low degree D (it is important to note that a weight two polynomial raised to a Frobe-
nius power qi is again weight 2). These are obtained by solving sparse linear systems of
equations (see [BCE+16] for more details on this). Our central function will be G = (F , F̃).
To invert this function, suppose we are given (Y0, Y1) ∈ G(K), we want to find X such that
G(X) = (Y0, Y1), that is, F(X) = Y0 and F̃(X) = Y1. Clearly, such X will also satisfy the
low degree polynomial equation

Ψ(X) = X
(
α1Y0 + · · ·+ αnY

qn−1

0 + β1Y1 + · · ·+ βnY
qn−1

1

)
+

Xq
(
αn+1Y0 + · · ·+ α2nY

qn−1

0 + βn+1Y1 + · · ·+ β2nY
qn−1

1

)
.

which we can solve, finding therefore the preimages of (Y0, Y1).

Security Analysis

Write

Ψ = X
[
L0

(
F, F̃

)]
︸ ︷︷ ︸

Ψ0

+Xq
[
L1

(
F, F̃

)]
︸ ︷︷ ︸

Ψ1

.

and recall that there are no terms of degree higher than D in Ψ. However, many of these
terms come either from Ψ0 or Ψ1 (not both!). From this observation it can be seen that
the matrices representing the quadratic forms L0

(
F, F̃

)
and L1

(
F, F̃

)
have the following
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shape 

∗ ∗ ∗ ∗
∗ ∗ ∗ . . . ∗ ∗ . . . ∗
∗ ∗ ∗ ∗

... . . .
∗ ∗ ∗ ∗
∗
...
∗


,



∗ ∗ ∗ ∗ ∗ . . . ∗
∗ ∗ ∗ . . . ∗
∗ ∗ ∗ ∗

... . . .
∗ ∗ ∗ ∗
∗
...
∗


where each block on the top-left is r × r, with r = dlogqDe. Hence, these matrices have a
low rank of r + 1. This may seem as the attack on HFE, but the main difference is that the
low rank is possessed by L0 and L1, not F and F̃ . However, it has been discovered that this
is not a barrier for a similar attack to that on HFE [PS16, CSTV17], and this cryptosystem
is unfortunately insecure.
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Chapter 6

Rank Analysis of Cubic Polynomials

6.1 Min-Rank Analysis for Cubic Big Field Constructions

As we pointed out in Section 5.2, the Big Field Idea has been a basis to propose quadratic
multivariate encryption schemes for decades. Nevertheless, Theorem 1.5.2 is not restricted
to any particular degree, which means that this approach works to generate polynomials of
any degree, in particular degree 3. In this section we show that if the central map is a low
rank cubic polynomial, then, as in the quadratic case, there must exists a low-rank linear
combination of the polynomials of the public key. In particular, we obtain an instance of
the cubic Min-Rank problem which can be solved using the techniques presented in Section
4.2.

6.1.1 Big Field Idea for Cubic Polynomials

Let F ∈ K[X] be a homogeneous weight 3 polynomial given by

F(X) =
∑

1≤i,j,k≤n

αi,j,kX
qi−1+qj−1+qk−1

and S, T ∈ Fn×n invertible matrices. Our first goal is to give an explicit expression for
the multivariate cubic polynomials of the composition T ◦ φ ◦ F ◦ φ−1 ◦ S. We begin by
representing the map F as F(X) = T (X,X,X) where X = (Xq0 , . . . , Xqn−1

)ᵀ and T :
Kn ×Kn ×Kn → K is the trilinear form given by

T (β, δ,γ) =
∑

1≤i,j,k≤n

αi,j,k · (βiδjγk).

Let A be the three-dimensional matrix whose entry (i, j, k) is given by αi,j,k, and assume
without loss of generality that the matrix A is symmetric (otherwise we can take the matrix
whose (i, j, k) entry is given by 1

3!
· (A[i, j, k] + A[i, k, j] + A[j, i, k] + A[j, k, i] + A[k, i, j] +

A[k, j, i]), which represents the same trilinear form T ).
Let T ′ : Kn×Kn×Kn → K be the trilinear form given by T ′(β, δ,γ) = T (∆Sβ,∆Sδ,∆Sγ),

then we can write this trilinear form as

T ′(β, δ,γ) =
∑

1≤i,j,k≤n

α′i,j,k · (βiδjγk)
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where α′i,j,k = T ′(ei, ej, ek) = T (∆Sei,∆Sej,∆Sek).
Let A′ be the three-dimensional matrix whose entry (i, j, k) is given by α′i,j,k. Notice that

this is the cubic version of the matrix (∆S)ᵀA(∆S) in Equation 5.1 from Section 5.3. It is
easy to see that the matrix A′ is symmetric since the matrix A is.

Let a ∈ Fn and let α = φ−1(Sa), we know that Frob(α) = ∆ ·φ(α) = ∆S ·a and therefore

F ◦ φ−1(Sa) = F(α) = T (Frob(α),Frob(α),Frob(α)) = T (∆S · a,∆S · a,∆S · a)

= T ′(a, a, a) =
∑

1≤i,j,k≤n

α′i,j,k · (aiajak).

Let R1, . . . , Rn ∈ Fn×n×n be three-dimensional symmetric matrices such that A′ = y0 ·
R1 + y1 ·R2 + · · ·+ yn−1 ·Rn, where y0, y1 . . . yn−1 is the basis of K over F. Then

F ◦ φ−1 ◦ S(a) =
∑

1≤i,j,k≤n

α′i,j,k · (aiajak)

=
∑

1≤i,j,k≤n

(
n∑
`=1

y`−1R`[i, j, k]

)
· (aiajak)

=
n∑
`=1

y`−1

( ∑
1≤i,j,k≤n

R`[i, j, k] · (aiajak)

)
︸ ︷︷ ︸

t`

.

Since t` ∈ F, we obtain that φ ◦ F ◦ φ−1 ◦ S(a) = (t1, . . . , t`)
ᵀ, therefore, each cubic

polynomial in the composition φ◦F◦φ−1◦S is given by f`(x) =
∑

1≤i,j,k≤nR`[i, j, k]·(xixjxk).
Finally, when we apply the transformation T we obtain that each cubic polynomial in the
composition P = T ◦ φ ◦ F ◦ φ−1 ◦ S is given by

p`(x) =
∑

1≤i,j,k≤n

(
n∑
t=1

T [`, t] ·Rt[i, j, k]

)
· (xixjxk).

As a conclusion, if we let A` be the matrix whose entry (i, j, k) is given by
∑n

t=1 T [`, t] ·
Rt[i, j, k] then we obtain that this is the symmetric matrix corresponding to the `-th poly-
nomial in P . In particular, this shows we can compute efficiently the composition T ◦ φ ◦
F ◦ φ−1 ◦ S from S, T and F .

6.1.2 Existence of Low Rank Linear Combination

Let us continue with the same setting as before, and let r be the rank of A, which in
particular means that A can be written as

∑r
`=1 u` ⊗ v` ⊗w`. Suppose that r � n. In this

section we prove that there exists a low-rank linear combination of the three-dimensional
matrices representing the composition P , and in Section 4.2 we showed how to find such
combination.

Recall that the matrix A′ was defined as A′[i, j, k] = T (∆Sei,∆Sej,∆Sek). We claim
that the rank of this matrix is at most the rank of A. We show this by exhibiting vectors
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u′`,v
′
`,w

′
` ∈ Kn such that A′ =

∑r
`=1 u

′
` ⊗ v′` ⊗ w′`. Let M be the matrix ∆S, we define

u′` =
∑n

i=1 u`[i] ·M [i, ·], v′` =
∑n

i=1 v`[i] ·M [i, ·] and w′` =
∑n

i=1 w`[i] ·M [i, ·], then

A′[i′, j′, k′]

= T ′(Mei′ ,Mej′ ,Mek′)

=
∑

1≤i,j,k≤n

A[i, j, k] ·
(
(Mei′)[i] · (Mej′)[j] · (Mek′)[k]

)
=

∑
1≤i,j,k≤n

(
r∑
`=1

u`[i] · v`[j] ·w`[k]

)(
(M [i, ·]ei′) · (M [j, ·]ej′) · (M [k, ·]ek′)

)
=

r∑
`=1

∑
1≤i,j,k≤n

(
u`[i]M [i, ·]ei′

)(
v`[j]M [j, ·]ej′

)(
w`[k]M [k, ·]ek′

)
=

r∑
`=1

(
n∑
i=1

u`[i]M [i, ·]ei′
)(

n∑
j=1

v`[j]M [j, ·]ej′
)(

n∑
k=1

w`[k]M [k, ·]ek′
)

=
r∑
`=1

[(u′`) ei′ ] [(v′`) ej′ ] [(w′`) ek′ ]

=
r∑
`=1

u′`[i
′] · v′`[j′] ·w′`[k′].

From this we conclude that A′ =
∑r

`=1 u
′
` ⊗ v′` ⊗w′` and hence rank(A′) ≤ r.

Now let (λ1, . . . , λn) = (y0, . . . , yn−1) · T−1, then

n∑
i=1

λiAi =
n∑
i=1

λi

(
n∑
j=1

T [i, j] ·Rj

)
=

n∑
j=1

Rj

n∑
i=1

T [i, j] · λi =
n∑
j=1

Rj · yj−1 = A′.

This shows that there is a linear combination of the matrices representing the public key
whose result is a low rank three-dimensional matrix. This yields directly an instance of the
cubic Min-Rank problem which can be solved for instance with the extension of the Kipnis-
Shamir modeling presented in Section 4.2.2. As we mentioned before, this is by itself a
weakness of the scheme, as it allows distinguishing public keys from random polynomial
systems and also has implications on the degree of regularity of the system, as stated in
Section 6.2. Moreover, the coefficients we have obtained here carry the same information
about the secret key as those in the original (quadratic) Min-Rank attack, and this can be
used in a similar way to construct equivalent keys.

6.2 Direct Algebraic Attack

The direct algebraic attack, or simply the direct attack, refers to the case when an attacker
aims to find the plaintext associated with a ciphertext (c1, . . . , cn) directly from the public
multivariate equations p1 = c1, . . . , pn = cn, without the knowledge of any other informa-
tion of the system. In almost all the cases, the most efficient way to perform this attack
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is to compute a Gröbner basis of the ideal I generated by the multivariate polynomials
p1 − c1, . . . , pn − cn.

Gröbner bases have played an important role not only in multivariate cryptography, but
also in coding theory and lattices [ABBQBTP16, ASP11]. There is a general consensus that
when computing a Gröbner basis over a finite field, one of the most efficient ways to do
it is to use the F4 or F5 algorithms [Fau99, Fau02]. In a recent work [MS17], the authors
used their M4GB algorithm to solve some of Fukuoka’s MQ challenges within 11 days. The
complexity of all these algorithms depends on the degree of regularity of the system. Since
the degree of regularity is hard to determine, it is usually approximated by its first fall
degree, defined as the first degree at which non-trivial relations between the polynomials
p1, . . . , pn occur. For a more thorough survey of the complexity of computing Gröbner bases
and an analysis of the different parameters used to study it, see [Esc16].

We now want to derive an upper bound for the first fall degree of the system. Before
we do that, we need the following definition.

Definition. The LRank of a homogeneous λ ∈ F[x1, . . . , xn] is the smallest integer s such
that there exist linear homogeneous µ1, . . . , µs ∈ F[x1, . . . , xn] with λ contained in the
algebra F[µ1, . . . , µs].

Hodges et al. [HPS14] proved that for a scheme with core polynomial of weight 3, its
first fall degree Dff(p1, . . . , pn) is bounded by

Dff(p1, . . . , pn) ≤ LRank(P0)(q − 1) + 5

2
.

Here P0 is the homogeneous part of highest degree of the core polynomial F seen as an
element of the graded algebra K[X0, . . . , Xn−1]/

(
Xq

0 , . . . , X
q
n−1

)
, where Xi corresponds to

Xqi, for i = 0, . . . , n− 1. In our case

P0 =
∑

1≤i,j,k≤n

αi,j,kXi−1Xj−1Xk−1.

If we take αijk uniformly at random, then with high probability LRank(P0) ≤ rank(P0),
so

Dff(p1, . . . , pn) ≤ rank(F)(q − 1) + 5

2
, (6.1)

since rank(P0) = rank(F).
In addition, in [HPS14] the authors show that if degF = D, then rank(F) ≤ blogq(D −

2)c+ 1, and hence

Dff(p1, . . . , pn) ≤
(q − 1)blogq(D − 2)c+ 4 + q

2
. (6.2)

We now want to experimentally study the tightness of the bound (6.2), as they did in
[HPS14] for different parameters1. In Table 6.1 we present some of the results obtained

1Table 1 in [HPS14] do not include the values for the parameters we are interested in, so we constructed
our own version of it.
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for different values of the parameters q, n and t, where t is the smallest integer such
that D ≤ qt − 1. The value B corresponds to the bound given by equation (6.2), and
Dff is the first fall degree of the system for each choice of the parameters, which is read
from Magma’s verbose output. All the polynomials used in the attack were built as it was
explained in Section 6.1.1, and for all cases we have included the field equations, i.e.,
xqi − xi for i = 1, . . . , n.

q t n B Dff
5 3 8 8 8
5 3 9 8 8
5 3 10 8 8
5 4 8 10 9
5 4 9 10 9
5 4 10 10 10
5 5 8 12 9
5 5 9 12 9
5 5 10 12 10

q t n B Dff
7 3 8 11 10
7 3 9 11 10
7 3 10 11 10
7 4 8 14 10
7 4 9 14 11
7 4 10 14 12
7 5 8 17 10
7 5 9 17 11
7 5 10 17 12

q t n B Dff
11 3 8 17 13
11 3 9 17 14
11 3 10 17 15
11 4 8 22 13
11 4 9 22 14
11 4 10 22 15
11 5 8 27 13
11 5 9 27 14
11 5 10 27 15

q t n B Dff
17 3 8 26 17
17 3 9 26 18
17 3 10 26 18
17 4 8 34 17
17 4 9 34 18
17 4 10 34 18
17 5 8 42 17
17 5 9 42 18
17 5 10 42 18

Table 6.1: Experimental results to study the tightness of the bound for Dff given by (6.2), for
different choices of the parameters q, t and n. The value of Dff is read from Magma’s verbose

output.

We notice that the bound given by (6.2) is very tight for small values of q and t, and
that it starts to widen considerably as q increases, and with a smaller pace as t increases.
We also observe that for fixed q and t, the bound gets tighter as n increases. It is very clear
that the bound needs to be improved for larger values of q.

On the other hand, the complexity of finding a Groebner basis G for the ideal I is
bounded by

O

((
n+Dff

Dff

)ω)
,

where 2 ≤ ω ≤ 3 is the linear algebra constant. When n grows to infinity, the complexity 2

becomes O
(
nωDff

)
. Therefore, according to the bound in (6.1), the complexity of finding G

is bounded by
O
(
nω

rank(F)(q−1)+5
2

)
.

Thus, if q and rank(F) are constant, then the complexity of finding G is polynomial in the
number of variables n. We also observe that the complexity is exponential in rank(F).

6.3 Example: HFE Cubic

Here we present the natural generalization of the HFE cryptosystem discussed in Section
5.3. This is a natural scheme to which our new Min-Rank attack might apply. The secret

2Notice that we are using an upper bound to estimate the complexity. This is a customary usage for this
kind of attacks. In practice, it has been observed [Spa12] that, on average, this bound is not too far from the
actual complexity.
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key consist of two invertible matrices S, T ∈ Fn×n and a univariate polynomial F ∈ K[X]
of the form

F(X) =
∑

1≤i,j,k≤r

αi,j,kX
qi−1+qj−1+qk−1

,

where αi,j,k ∈ K. Notice that the degree of this polynomial is at most 3qr−1. Due to
Theorem 1.5.2 we have that the composition F = φ ◦ F ◦ φ−1 : Fn → Fn can be expressed
as evaluation of n homogeneous cubic polynomials f1, . . . , fn ∈ F[x1, . . . , xn]. Therefore the
composition T ◦F ◦S = T ◦φ◦F ◦φ−1 ◦S can also be seen as evaluation of n homogeneous
cubic polynomials p1, . . . , pn ∈ F[x1, . . . , xn]. These polynomials constitute the public key.
Encryption and decryption is performed just as in HFE, which is possible since (as we did
there) we take r to be small enough so that the polynomial F is easy to invert.

Min-Rank Analysis

Let A be the three-dimensional matrix whose entry (i, j, k) is equal to αi,j,k if i, j, k ≤ r, and
0 otherwise. As we have done before, we can assume, without loss of generality, that this
matrix is symmetric. To see that our Min-Rank attack applies to this scheme, we only need
to show that the three-dimensional matrix A has low rank. We claim that the matrix A has
rank at most (3/4)r2. This can be seen since the rank of the matrix A is the same as the
rank of the matrix A′ ∈ Fr×r×r defined by A′[i, j, k] = A[i, j, k], and the latter is bounded by
(3/4)r2, as seen in Section 2.2.

It is important to remark that we considered this attack just as an example and it is not
by any means the most efficient attack on this scheme. For instance, this scheme counts
with a structural weakness: when the differential is applied the rank drops from O(r2) to
r. As we saw in Section 4.3.2, this is not a typical behavior, and it only happens due to the
underlying structure of the matrix involved.
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Chapter 7

HiRaC: High Rank Cryptosystem

In this chapter we present a new proposal for a Multivariate Public Key Encryption Scheme.
We call it HiRaC, standing for High Rank Cryptosystem. HiRaC uses cubic polynomials, and
its name is motivated from the apparent fact that our scheme has a high rank and therefore
is not vulnerable directly to the attacks sketched in the previous chapter.

Many of the constructions seen so far in MPKC use quadratic polynomials. This makes
sense since our assumptions say that these systems are difficult to solve, and from a the-
oretical point of view every polynomial system can be made quadratic by adding enough
equations and renaming monomials. Another advantage of considering these systems is
that it takes O(mn2) elements from the field F to store m quadratic polynomials, which is
a reasonable number.

Our contribution is related to the use of cubic polynomials instead of quadratic. This
will give us more flexibility but we will need O(mn3) elements from F to store m of these
polynomials. However, this number is still manageable, and the possible advantages of
using these may overcome the bottlenecks.

7.1 Description of HiRaC

Let q be a prime number greater than 3, n a positive integer, F a finite field of size q and K a
field extension of F of degree n. For our trapdoor function we will need a small parameter
r which we will use for inverting the central function.

To build the central function, we begin by picking completely at random a weight 2
polynomial F ∈ K[X]. We also choose at random for each j = 0, . . . , r, a q-weight 1
polynomial Mj ∈ K[X] and a weight 3 polynomial G(X) ∈ K[X] whose biggest power is
3qr. As usual, we choose two invertible linear transformations S, T : Fn → Fn. Finally, we
consider the weight 3 polynomial H : K→ K given by

H(X) =
r∑
j=0

XqjMj (F ′(X)) + G(X) (7.1)

where F ′ = F ◦ φ−1 ◦ S−1 ◦ φ.
The trapdoor function is then P : Fn → F2n given by

P = (φ ◦ F ◦ φ−1, T ◦ φ ◦ H ◦ φ−1 ◦ S),
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while the secret information is (F ,Mi,G,H, S, T ).
We refer to G as the noise, since it is intended to hide the structure

∑
XqjMj (F ′(X)).

Remark. Since F is chosen completely at random, we do not need to apply the linear
transformation T at the end. In addition to this, one may apply S on the right to F and
by doing so one can use F directly on equation (7.1) rather than F ′. However, we keep
the construction in this fashion to stress that the left part of the public key is completely
random.

To invert P we proceed as follows. Suppose that we are given c = (c1, . . . , c2n) in the
range of P , and we want to solve the simultaneous equationsF (φ−1(x)) = Z1,H (φ−1(Sx)) =
Z2 where Z1 = φ−1(c1, . . . , cn) and Z2 = φ−1 ◦ T−1(cn+1, . . . , c2n). By setting X = φ−1(Sx),
this is the same as F ′ (X) = Z1 and H (X) = Z2. Any solution to this system will also
satisfy the polynomial equation

Z2 =
r∑
j=0

XqjMj (Z1) + G(X),

and the parameter r is chosen small enough so that this equation can be solved.
In Table 7.1 we can see the timings for the key generation process using this idea given

the secret key, along with encryption and decryption times for several sets of parameters.
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q n r
Plaintext space

size ≈ Degree of G(X)
Public key

generation [s] Encryption [s] Decryption [s]

2 50 5 250 96 3.424 0.024 0.019
2 50 6 250 192 3.804 0.024 0.038
2 50 7 250 384 4.194 0.026 0.107
2 50 8 250 768 4.640 0.027 0.254
2 50 9 250 1536 5.387 0.026 0.629
2 50 10 250 3072 5.480 0.028 2.847
2 100 3 2100 24 27.110 0.131 0.017
2 100 4 2100 48 30.757 0.132 0.034
2 100 5 2100 96 34.153 0.132 0.081
2 150 3 2150 24 124.268 0.402 0.038
2 150 4 2150 48 135.726 0.392 0.070
2 150 5 2150 96 142.668 0.398 0.144
3 31 3 250 81 1.114 0.030 0.074
3 31 4 250 243 1.340 0.032 0.384
3 31 5 250 729 1.293 0.032 2.078
3 31 6 250 2187 1.453 0.032 7.214
3 63 2 2100 27 10.274 0.238 0.034
3 63 3 2100 81 11.650 0.238 0.168
3 63 4 2100 243 12.788 0.236 0.834
3 63 5 2100 729 14.080 0.240 4.516
3 94 2 2150 27 65.796 1.838 0.128
3 94 3 2150 81 73.036 1.836 0.542
3 94 4 2150 243 79.340 1.834 2.886
5 21 2 250 75 0.254 0.006 0.026
5 21 3 250 375 0.358 0.006 0.288
5 21 4 250 1875 0.370 0.004 3.812
5 43 2 2100 75 4.588 0.070 0.436
5 43 3 2100 375 5.305 0.068 3.852
5 43 4 2100 1875 6.000 0.070 28.940
5 64 2 2150 75 8.236 0.356 0.248
5 64 3 2150 375 10.010 0.354 3.068
5 64 4 2150 1875 11.735 0.352 37.242
7 17 2 250 147 0.162 0.004 0.132
7 17 3 250 1029 0.200 0.004 1.844
7 17 4 250 7203 0.200 0.005 19.275
7 35 2 2100 147 1.155 0.040 0.225
7 35 3 2100 1029 1.370 0.040 4.850
7 35 4 2100 7203 1.605 0.035 50.460
7 53 2 2150 147 11.675 0.135 1.760
7 53 3 2150 1029 13.230 0.140 22.545

11 14 2 250 363 0.090 0.010 0.415
11 14 3 250 3993 0.085 0.005 7.440
11 29 2 2100 363 1.125 0.025 1.460
11 29 3 2100 3993 1.325 0.025 29.570
11 43 2 2150 363 5.635 0.080 3.665
11 43 3 2150 3993 6.550 0.080 81.060
17 12 2 250 867 0.055 0.000 0.990
17 12 3 250 14739 0.040 0.005 27.680
17 24 2 2100 867 0.390 0.010 3.840
17 24 3 2100 14739 0.475 0.015 87.375
17 36 2 2150 867 1.875 0.075 10.375

Table 7.1: Experiments of Public Key generation, encryption and decryption, for different
values of q, n and r
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7.2 Min-Rank Analysis

Now we apply our framework to analyze the vulnerability of our scheme with respect to
the Min-Rank attack. More specifically, we explore the viability of performing the attack on
the composition T ◦ φ ◦ H ◦ φ−1 ◦ S. In order to achieve this, we must find an upper bound
on the rank of the symmetric matrix representing the polynomial H.

From equation (7.1) we can write H(X) as

H(X) =
r∑
t=1

Xqt−1 · Ft(X)

where Ft ∈ K[X] is some weight 2 polynomial. We can write this as H(X) = T (x,x,x)
where x = (Xq0 , . . . , Xqn−1

)ᵀ and T : Kn ×Kn ×Kn → K is the trilinear form given by

T (β, δ,γ) =
r∑
t=1

βt · Tt(δ,γ)

with Ft(X) = Tt(x,x). Assume without loss of generality that each Tt is symmetric. Notice
that T is not symmetric in general. To obtain the symmetric trilinear form associated to H
we compute

1

3!
(T (β, δ,γ) + T (β,γ, δ) + T (δ,β,γ) + T (δ,γ,β) + T (γ,β, δ) + T (γ, δ,β)) .

However, since each Tt is symmetric, any permutation of the two last inputs do not change
the trilinear form, which leaves us with

1

3
(T (β, δ,γ) + T (δ,β,γ) + T (γ,β, δ)) .

As a conclusion, the rank ofH is at most three times the rank of T . Now we claim the latter
rank is at most r ·n. Let Tt be the two-dimensional matrix associated with the bilinear form
Tt. Assuming that Tt has full rank, we can write Tt =

∑n
`=1 v

(t)
` ⊗ w

(t)
` , then the matrix

associated to T is given by

A =
r∑
t=1

et ⊗

(
n∑
`=1

v
(t)
` ⊗w

(t)
`

)
=

r∑
t=1

n∑
`=1

et ⊗ v
(t)
` ⊗w

(t)
` ,

which has rank at most r · n.
We conclude that the rank of the polynomialH is at most 3·r ·n. It is important to notice

that if r = O(1), then this rank is not asymptotically maximal since 3 · r · n = O(n) and we
know that the maximal rank for the given dimensions isO(n2). In particular, there is indeed
a rank defect, meaning that our central map has a rank that is not maximal. However, if the
rank happens to be close to O(n) then all the approaches to the underlying cubic Min-Rank
problem become inefficient as their complexity using Gröbner bases is exponential (see for
example [Esc16] or [Spa12]).

The above argument shows that the overall structure of the scheme does not imply a
low rank. However, since we have not provided a lower bound, the rank of the central map
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could still be low due to some other structural weakness. We have run extensive experi-
ments that seem to indicate this is not the case: We generated several HiRaC instances and
considered the differential of the central polynomial. We calculated then its rank (recall
that the differential of a cubic polynomial is a quadratic polynomial), and in all of our
experiments we found that this rank was n. Since, as we saw in Section 4.3.2, the rank of
the differential is less than or equal to the rank of the original polynomial, it follows that
our central map has, for the experiments executed, rank greater than n.

Finally, we stress out that this argument does not rule out any structural attack like the
one we showed at the end of Section 6.3, or like the one found in ZHFE.
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