
Multiparty Computation over Z/2kZ
Ph.D. Thesis

Daniel Escudero



Abstract

The main topic of study in this thesis is Secure Multiparty Computation, or MPC for short.
This is a set of techniques that enable a set of mutually-distrustful parties to securely
compute a given function of their choice, without leaking any information about the
inputs provided to the computation beyond what is leaked from the output itself. These
tools are extremely useful in many applications where privacy of data is required, but
different operations on this data must still be performed.

The field of MPC has a rich and fruitful research history. Starting with the seminal work of
Yao in 1982, a large body of works has taken care of expanding the knowledge barrier in
MPC in many directions, including the development of new techniques, discovering new
inherent limitations, improving the efficiency of existing techniques, among others.

In spite of such a long and successful series of studies, most MPC techniques share in
common a simple yet restrictive limitation. Mathematics play a central role in the de-
velopment of MPC protocols, and in particular, most MPC techniques require the desired
computation to be performed over a “nice enough” algebraic structure. This is typically
represented by means of finite fields, which include the natural case of arithmetic mod-
ulo 2 over {0, 1}, and more generally include integer arithmetic modulo a prime number
p. Unfortunately, this type of arithmetic is not very natural for many applications, and
moreover, it is not “directly compatible” with modern computer architectures where na-
tive operations are typically arithmetic modulo 232 or 264.

In this thesis we explore the task of designing MPC protocols when the computation do-
main is a ring of the form Z/2kZ, that is, integers modulo 2k . This algebraic structure
is not a field, and in fact, it has a lot of undesirable properties that complicate the task
of protocol design in this setting. On the positive side, this ring is more directly com-
patible with native datatypes in modern computer architectures such as int32 or int64,
which can naturally lead to further improvements in the efficiency of different MPC pro-
tocols. Additionally, arithmetic modulo a power of two is more “compatible” with binary
arithmetic, which is a central building block in many applications.

The results of this thesis include a series of MPC protocols in a wide variety of security
scenarios for computation over Z/2kZ. These settings include passive and active corrup-
tion for t corruptions where t < n/3, t < n/2 and t < n. Special cases where the number
of parties is small are also considered, and specialized protocols for different subcom-
putations that appear thoroughly in many applications are presented, taking complete
advantage of the fact that the computation domain is Z/2kZ, instead of a finite field.

As a bonus, and to compare our novel techniques with previous works over finite fields,
several existing techniques over these domains that can be considered essential in the
area are presented.
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Abstrakt

Hovedemnet for denne afhandling er Sikker Flerparts Beregning, eller MPC fra engelsk
”Secure Multiparty Computation”. MPC omfatter en række teknikker, der tillader en
gruppe indbyrdes-mistroisk deltagerer, at beregne en vilkårlig funktion, uden at lække
noget information funktionens input, ud over hvad der naturligt lækkes via funktionens
output. Disse teknikker er yderst brugbare i mange applikationer hvor data privathed er
et krav, men hvor beregninger på disse data er nødvendige.

MPC som forskningsfelt har en rig historie. Med en begyndelse i det skelsættende værk af
Yao fra 1982, har en stor samling forskning udvidet forståelsen for MPC i mange forskellige
retninger med udvikling af nye teknikker, opdagelse af fundamentale begrænsninger,
effektivisering af eksisterende teknikker, o.s.v.

På trods af denne lange og succesfulde række af forskningsværker, deler mange af de
teknikker der bruges i MPC stadig en fundamental begrænsning. Matematik spiller en
central rolle i udviklingen af MPC protokoller, og specielt kræver de fleste MPC protokoller
og teknikker en algebraisk struktur der er “pæn nok”. Dette betyder oftest, at endelige
legemer, såsom modulo 2 over 0, 1 og mere generelt modulo et primtal p, anvendes.
Denne type aritmetik er dog ikke naturlig i mange sammenhæng, og hvad mere, er ikke
”direkte kompatibel” med moderne computer arkitekturer, hvor aritmetik foretages mod-
ulo 232 eller 264.

I denne afhandling undersøges det, at udvikle MPC protokoller hvor domænet for bereg-
ninger er en ring af formen Z/2kZ, altså, heltal modulo 2k . Denne algebraiske struktur
er ikke et legeme og indeholder en masse negative egenskaber der vanskeliggør pro-
tokol design. På den mere positive side, så er denne ring direkte kompatibel med de
datatyper der er indbygget i moderne computere, såsom int32 og in64, hvilket gør bereg-
ninger mere effektive. Hvad mere, aritmetik modulo 2k er mere kompatibel med binær
aritmetik (aritmetik modulo 2), som er en naturlig byggeblok i mange applikationer.

Resultaterne der præsenteres i denne afhandling indebærer en række af MPC pro-
tokoller for beregning modulo 2k for mange forskellige sikkerhedsmodeller. Disse
sikkerhedsmodeller omfatter både “passive” og “aktiv” sikkerhed, og med korrumper-
ings tærskler på både t < n/3, t < n/2 og t < n. Derudover undersøgers der også
scenario hvor antallet af beregnings parter lille, og under-protokoller der anvendes i
mange forskellige typer beregninger bliver præsenteret. I disse udnyttes der fuldt ud, at
beregningsdomænet er Z/2kZ i stedet for et endeligt legeme. De nye teknikker i denne
afhandling bliver sammenlignet med tilsvarende teknikker for endelige legemer.

Som en bonus, så gives der også en omfattende præsentation af eksisterende teknikker
for sikker beregninger modulo 2k .
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Preface
I cannot believe I have finally
managed to assemble together
a +200 pages thesis. This has
been quite a fun journey, full of
countless ups and downs, and
it just feels nice to see this
stage coming to an end, leaving
room for what will come next.

I grew up in a small city in a not-so-small country called Colombia. Somehow, I have
managed to finish a Ph.D. under the supervision of one of the most renowned cryptogra-
phers around the globe, Ivan Damgård. This has been a long story of sadness, frustration,
happiness, and many other emotions that tend to contradict each other. I felt the need
of writing down my experience through this journey, my emotions, crucial events and
central people that helped me through this path. This preface is intended to give an
overview of this adventure. Lots of things can change in the course of 4.5 years, and I am
very happy for being able to write this foreword from the position in which I am right now:
writing a dissertation. Additionally, there are several actors who played a fundamental
role in the development of this story, and this preface also serves as a place to honor
them.

I apologize with the reader in advance for the rather informal style in which the preface
below is written. It felt more organic, more natural, and more affine to how my thoughts
were lying in my head. I also apologize for the density of the text, which feels more like
a diary than a formal Ph.D. thesis preface.

Undergrad and Early Master Years

I studied Mathematics at university, and somehow managed to get involved with the
exciting field of Cryptography thanks to my professor, bachelor/master thesis advisor,
and friend, Daniel Cabarcas. His guidance and support were crucial as I was starting
to learn concepts outside textbooks and exercises. Back then, learning cryptography
was only getting more and more exciting: as a soon-to-be mathematicians, the field
contained many of the great areas I enjoyed studying and learning about like number
theory, discrete mathematics, algebraic geometry, graph theory, and many others, but on
top of this it also allowed me to get started with an area that a part of me had been
desiring for a while, which is computer science.

Back at the time, no university in my country offered a proper computer science degree
(something that has changed in recent years thanks to many forces getting together,
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among them, crucially, that of Daniel Carbarcas), and the closest thing was Systems En-
gineering. After two failed years of attempting to become a chemical engineer (before
turning into mathematics), I had decided I did not want to become any kind of engineer.
However, I still liked computers, and I enjoyed all basic programming courses I had a the
math department, although I wanted to get myself much more involved with the topic.
Given this, cryptography, for me, was also a way to learn about more applied subjects,
while still being able to use and learn advanced mathematical tools and constructions.

Daniel Cabarcas advised me well in the field of Multivariate Public Key Cryptography,
enabling me to travel abroad for the first time for a conference and publish my first
paper [12] when I was still an undergrad. I am extremely grateful to Daniel Cabarcas,
not only for all the help and guidance he provided during my early academic years, but
for all the lessons he taught me about other non-cryptography-related topics such as
academia in Colombia, settling in the US, and many, many others.

In the same note, although they are not cryptographers, I would like to thank Professors
Carlos Velez and Fernando Morales, who taught me so much through their courses and
our personal interactions. I’m grateful for the wonderful friendship we have maintained
even to these days.

Looking for a PhD

I managed to learn a lot about multivariate public key cryptography and eventually I
felt very confident in that particular area. However, all my focus was put entirely on
this specific field, which limited quite a bit the options I had for studying abroad, which
was one of my oldest dreams at the time. It was not until I met Aisling Connolly and
Pooya Farshim, both great professional cryptographers and amazing people, that I started
to learn about all the other exciting ideas and opportunities present in other parts of
cryptography. I met Aisling and Pooya at CryptoCO 2016, a cryptography school that took
place in Bogotá, Colombia. Walking around the city, we had the chance to talk about
future plans, goals and aspirations, and very quickly I got a whole world full of options
outside multivariate public key cryptography, but still, inside cryptography itself. We sat
at a cafe in La Candelaria, and Pooya wrote for me in a piece of paper (which I still have
with me) different places to apply to, book recommendations, websites, resources, etc.

The support I obtained from Daniel Cabarcas, and then by Aisling and Pooya, were crucial
for my next step. Several universities were listed in the note that Pooya gave me, and I
applied to many of them. One of them, however, was Aarhus University, were I ended up
studying my PhD. I wrote Claudio Orlandi with a motivation letter plus a recommendation
letter from Pooya, and I was invited to visit the university in November 2016. I was excited,
but unfortunately, the visit turned out to be some kind of a disaster! (or at least, as
usual, that is how it felt to me). First, the presentation talk I gave was rushed and I did
not give a good impression of myself. What was worst is that, even though I felt quite
confident in the subfield I had been working on, it was during my visit that I noticed
that my background in cryptography in general was very low. I did not even know what
MPC was, or that it even existed. I also did not know about Shamir secret sharing, zero
knowledge proofs, or many other “essential” concepts in cryptography. Besides, I was
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very disconnected from practice: I did not even know that SHA was a family of hash
functions, and the acronym AES did not ring any kind of a bell.

The lack of background prevented me from having any meaningful conversations with
members of the group, when I visited. I talked with Ivan for only like 5 minutes, before
he left for a trip. I only met once with Claudio, my host, and the conversation was not
very fruitful. Other members of the group were also friendly but, again, conversations
would be rather superficial. My week visiting Aarhus very quickly became simply me
getting to know the university and the city, rather than having any meaningful academic
engagements.

In spite of this, however, two months after my visit I received a notice that informed me
that I had been accepted as a Ph.D. student under the supervision of Ivan Damgård and
co-supervision of Jesper Nielsen. This came as a surprise, an extremely pleasant one, so
I started planning for my next steps.

PhD: Early Years

Right after joining Aarhus University, my background was still a bit too weak, so my first
full year was basically devoted to me building an appropriate profile for studying cryp-
tography at the level in which my current position required. This was a painful and
frustrating experience: I had the title of a Ph.D. student, but all other Ph.D. students
around me were simply doing so well! We had weekly meetings were we shared to each
other what we were all working on, and, while my reports were typically of the kind “just
reading papers/books”, many other members would talk about submissions to great con-
ferences, progress on exciting projects, and many other cool things. Sometimes I would
feel so frustrated after this meeting that my whole day would be essentially lost in terms
of productivity.

I met very little with my advisor, which made me reach some depressing conclusions
like that he was disappointed of his new student. Today I understand that all this was
imposter’s syndrome, and that most of us go through it in one way or another. However,
knowing this does not necessarily make it less painful (and, in fact, it does not prevent
me from feeling it as of today, from time to time).

The task of getting an adequate level of prior knowledge in the area of secure multiparty
computation, which was the field I wanted to work on, quickly became a daunting task.
Most of the resources were papers, which were either too old or too complex if the only
thing an uninitiated novice like me wanted was to get a general idea of the field and some
of its constructions and results. As a statement of how hard I tried to get this knowledge,
I must confess I read several “essential resources” in full detail, like the book [34], the
original UC paper by Canetti [24], the simulation based tutorial by Yehuda Lindell [67],
and many more. I still preserve some of the printed papers and books with a bunch of
notes and highlighted passages, many of which, I remember, meant absolutely nothing
back at the time. Furthermore, many of which, even today, I do not fully understand.

It is motivated by this difficulty I went through that I decided to add to my thesis a general
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and rather intuitive introduction to (secret-sharing-based) secure multiparty computa-
tion, which can be found in Part I. I like disseminating knowledge, and I already started
sharing knowledge to a broader audience through a set of blog posts, for example [49].
I find this thesis to be a chance to get a more formal write-up on the topic, which may
serve as a starting point to a more solid stand-alone resource in the future. This should
prove useful for future students, or in general, people in the desire of learning MPC, with
a similar background to the one I had when I started in the field.

PhD: Middle Years

It was not until Ivan came to me with the seeds to build the SPDZ2k protocol [32], that I
got engaged in serious research activities. At that point, Peter Scholl, now professor at
Aarhus University, joined the group as a postdoc, and he happened to be an expert in
the particular MPC setting that SPDZ2k was aiming to. His guidance proved crucial in the
development of my research skills in the area of MPC, and it is thanks to him that I slowly
acquired some level of self-confidence so that the painful experience that my Ph.D. had
been so far finally became something I could enjoy.

After my first project, several other works started to appear. I began to establish new re-
search collaborations, think about new ideas and learn about new topics. These “golden
years” gave me the hope and confidence I was so fiercely looking for, and allowed me
to picture myself ahead, plan for visits, internship, and other research activities for the
nearby future. Multiple wonderful things happened in my personal life during this time
also. For example, I got married, and became the uncle of two wonderful little girls.

PhD: Final Years

With the appearance of COVID in 2019, several of my plans started to fail. For example,
I was planning to visit Abhi Shelat at Northeastern University for around six months in
mid 2020, and due to the pandemic this had to be canceled. Many other projects had
to be cut off, but the hardest hit came when we were sent to work from home. Being
away from my family, and living in a small studio in Aarhus at the moment, I decided
to travel back home on April 2020 before doing so became impossible. This was a good
move: I was living with my wife, we had a good working environment and we managed
to keep the productivity. As time passed, however, the effects of the isolation became
more evident. The time difference with Europe prevented me from joining regularly our
group meetings, and several joint projects started to get delayed due to the difficulties
of collaborating via a video call. Conferences were not happening in person anymore, so
establishing new research connections was also, for me at least, an impossible task.

For June 2020 I was already in the need of returning to Denmark (since in-office work-
ing was being slowly redeployed), but traveling restrictions made it impossible for me
to do so before September 2020. After returning to Denmark, I had a few weeks of great
research interactions with different members of my group, but this did not last much,
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since in November 2020 we were, once again, sent to work from home. I only remember
Christmas being a very dark time. After some cold months of isolation and not a lot of
productiveness, we decided to travel back to Colombia in February 2021, where I stayed
until the end of my Ph.D. studies. Being at home, naturally, brought many positive as-
pects, but it only kept feeding the feeling of being isolated from my group and from the
research community in general.

Due to these factors, I do not feel as confident as I used to do about one year ago. I
sincerely look at the future, and hope things really improve, for the sake of me and all
the people whose confidence and motivation took a considerable hit due to the different
consequences of the pandemic.
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Introduction

An enormous amount of natural questions surrounding information and communication
have arisen throughout the history of humanity, questions that have played a pivotal
role in bringing us to where we are today, boosting many areas and branches of arts and
science. For example, the development of language as we know it and use it seamlessly
today, the transmission of information and knowledge from generation to generation,
and even the ability to “talk to ourselves”, have enabled the construction of societal
groups that boosted mutual development, allowing us to store and refine skills and ex-
pertise through education and communication.

After different groups started spreading, forming communities across noticeably far lo-
cations, the need of developing methods to transmit messages over long geographical
distances became obvious. Several approaches have been considered throughout the
history of humanity to approach this task. For example, with the construction of impor-
tant roads and highways, like the Royal Road, built by Darius the Great of 550 BC, com-
munication over long distances was truly boosted thanks to strategically placed posting
stations that would relay information to each other. Other forms of long distance com-
munication included visual cues, like fires or heliographs (like a mirror, used to reflect
sunlight), and these have been used to warn attacks, ask for help, or send several other
messages through some sort of binary code.

Thanks to several advances in topics like the ones described above, coupled with other
major developments in fields like electricity and radio waves, we can enjoy today of
countless amenities that were completely unthinkable to previous generations. It suffices
to consider, for example, the deployment of radio-based communication, the widespread
use of personal computing devices, or the astonishing global network called internet, to-
gether with all the applications that have been built on top, like electronic email, instant
messaging, payment and banking services, and many, many more.

From our discussion above we see that information and communication have played a
central role in an incredibly large portion of humanities’ most relevant advances across a
wide range of disciplines. Without the ability to communicate information between us, to
store it, manipulate it, and interpret it, it is very hard to imagine any possible advance in
other areas of knowledge, and in fact, it is even harder to define the concept of knowledge
itself. However, because of this very same reason, information also becomes a source of
great power, and due to the competitive nature of human beings, it becomes necessary
to somehow “secure” it. This led to the development of cryptography.

There are multiple settings in which the need to secure information and communication
becomes evident, with one of the most prominent examples throughout history being
war. Conflicts constitute scenarios where a lot of distributed parties have to share knowl-
edge with each other in order to reach their main goal, victory. Strategies, commands,
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Introduction

military intelligence, and many other forms of information have to be constantly stored,
manipulated and communicated, and to maintain an advantage over the enemy it is typ-
ically the case that this data cannot be leaked beyond the internal parties authorized
to access it. There are simply too many examples across the history of humanity that
illustrate the use of cryptography to protect information in war-related contexts, and in
fact, this has been, historically speaking, one of the most relevant use cases of these
techniques. For a thorough exposition of many of such examples we refer the reader to
Simon Singh’s great resource, The Code Book [76].

In general, cryptography in the context of war emerges mostly as a method to hide infor-
mation and communication from unwanted prying eyes. This is captured by the notion
of confidentiality, and it is necessary since other entities could cause some harm should
they have access to certain given knowledge. However, protecting information is not only
relevant in scenarios where some damage can be caused if not done otherwise. Indeed,
this notion has also been of major importance in less “destructive” settings. In some
scenarios, even if no harm between humans was ever done and no concerns about bad
use of information existed, ensuring confidentiality turns out to be important for certain
system or social construct to exist. A good example of this is economics, whose devel-
opment also contributed greatly to all of humanity advancements. Having the ability to
trade goods and services, establish currencies, and founding the notion of a person’s
“worth”, is one of the most important pillars of our development as a society. However,
for such an infrastructure to exist, it is typically necessary to ensure the confidentiality of
several types of information. For example, it is important to have competing companies
as this ensures a good quality of service, but to achieve this it is necessary that different
companies cannot spy on each other, as this allows them to face the challenges of the
market and gain an advantage. A good analogy is a poker game, where, if all participants
were to know each other’s cards, the point of the game would be completely void, and
in general this extends to any game or interaction that requires a secret to play.

Now, the concept of “securing” information is not necessarily restricted to hiding data,
which is what the examples above are concerned with, but it can also deal with preventing
information from being modified, or tampered with. It is natural to imagine why this
is important in war or economic contexts, considering for example an instruction from
a general that should not be modified, a record of a transaction that should not be
transformed, or a dollar bill that should not be easy to tamper with. Without integrity
of this data, orders could not be easily carried out through the chain of command, and
several constructions of the economic infrastructure, like fiat currency, would lack any
sense if they could easily be forged or tampered with.

Finally, the notion of securing information is also closely tied to the idea of ensuring it is
available for use. In many settings, similar of even worse harm can be done by erasing
information than by accessing it in an unauthorized manner. In our two main settings,
war and economics, we see that intelligence gathered about an enemy is worthless if
it cannot be accessed, and similarly, our modern economic infrastructure could not be
supported if the records of each individual could be deleted at a given point. Availability
may not pop up as the first idea when considering the task of securing information, but
it is as important as the concepts of confidentiality and integrity discussed above.
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Information and Communication in our Modern World

With the surge of the electronic and digital era, the concept of securing information and
communication takes a radical jump. For centuries, many scenarios have appeared that
have required humanity to address information security in one way or another, but all
of these were “mechanical”, or “physical”. For example, an important message could in
principle be hidden by placing it in a highly secure box, or the integrity of a document
could be ensured (as we still do today) by asking for a signature. For more sensitive
information, methods to “scramble” the data so that only the intended receiver could
read it were designed, and these are accompanied by a long history of fractures and
proposals.

In recent decades, however, the concept of securing information has engaged in profound
changes. First, with the advent of electricity, information started taking completely new
forms, and started being represented in a digital fashion. As a result, traditional, more
physical techniques such as the use of safes, envelopes, locks, ink signatures, and so on,
stopped being applicable in many scenarios, such as in the setting of sensitive commu-
nication over radio, or, even more importantly, the internet.

Fortunately, some techniques like “scrambling” information so that only an intended
received could interpret and make sense of the result could still be applicable in these
new settings. Mechanical and electronic devices were designed precisely to handle these
processes efficiently, and although the art of designing these methods was always fol-
lowed by some clever and unexpected way of completely undermining the security these
provided, these techniques resulted effective in many use cases. However, the advent
of modest computational power rendered some of the traditional techniques unusable,
given that these methods to protect information, although hard to break by a human
with pen and paper, fell within reach for modern computers. Naturally, people adapted
to these challenges, designing new and more complex methods that could withstand,
and even use in favor, the new wide range of available computational resources, and the
propose-break game continued for decades.

We have seen then that new technologies and developments in different areas have had
major impacts in how we conceive and interact with information and communication.
However, one of the biggest advances that caused one of the most notable shocks was
the invention of the internet, together with the adoption of computers, and more specifi-
cally personal computers. The idea of humans communicating with each other over pre-
viously unimaginable geographical distances, and the concept of individuals being able
to perform complicated computations, and store, manipulate, share and interact with
insurmountable amounts of information in personal devices, led to incredible advances
in many areas and disciplines. Information could be more easily accessed, distributed
and manipulated than ever, which could only open doors to new applications and de-
velopments.

Unfortunately, with the appearance of this new digital era of almost-instant communi-
cation, seemingly infinite amount of storage and computability resources, and limitless
availability of information, many problems in terms of security started to become rel-
evant, and these had a completely different shape when compared to analogous chal-
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lenges from the past, which made them harder to approach. There are countless ex-
amples, but to mention a few, consider for instance the classical task of securing com-
munication between two parties who are geographically separated. Traditionally, these
two parties would set up a “scrambling” mechanism together with a way of ensuring in-
tegrity, and this would be done perhaps by meeting in person once or somehow sharing
an initial secret that would enable confidential communications later on. Going through
this process in modern times is not that feasible anymore, given that the pair of par-
ties communicating could be something as ubiquitous as a client discussing sensitive
information with his or her bank, or an individual retrieving medical records from his or
her hospital. It is sadly not feasible for each of these institutions to perform a compli-
cated setup with each individual user. This is made even more complex when factoring
in identities and authentication, since it is much harder in internet scenarios, where all
information is digital, to ensure that the party at the other end of the line is who they
claim to be.

Another example that illustrates the difficulties of securing information in the modern
digital era pertains the ridiculously large amount of personal information existing on-
line. From the recent growth of social media to the extensive load of data gathered by
organizations and institutions, information about individuals is frequently in transit over
the internet and stored in different locations, many of these commonly available online.
The concept of privacy becomes today more relevant than ever, and people are becom-
ing more wary regarding the information present about them in external locations, which
has many uses for third parties ranging from seemingly-harmless advertising, to discredit
campaigns and censorship.

Cryptography

As we have illustrated above, the task of securing information and communication is as
old as these two concepts themselves, and humanity has cleverly found different ways
to deal with these problems, which was crucial for the fruitful development of a broad
collection of areas and disciplines. These methods can be considered of a more artistic
and heuristic nature rather than scientific, given that they typically consisted of different
proposals that “seemed” to work well in particular contexts, but shortly after were proven
to be insecure, not scalable, not applicable in other settings, or they simply become
obsolete. This, however, seemed to match the pace in which knowledge, discoveries and
inventions were being developed. Nonetheless, today’s times are radically different. The
list of challenges that emerge in regards to securing information that did not exist, or
were even unthinkable, before the modern digital age, is essentially endless. As a result,
modern solutions that could match the already established ways of science were in high
demand.

Cryptography, as a science, is born with the intention of addressing the difficulties of
securing information and communication in our modern context. As we have already
mentioned, traditional techniques that today we regard as cryptography consistedmostly
of ad-hoc methods to “scramble” information, which in modern terms can be associated
with the concept of encryption. The task of hiding data is even more relevant today,
as we have highlighted already with the examples if clients requesting medical records,

5



Introduction

or users discussing sensitive information with financial institutions. In contemporary
times, the requirements of confidentiality, integrity and availability are not restricted to
governments and military, and instead, it is fair to say that every single individual making
use of our current digital and distributed infrastructure is in need of these services.

Modern cryptography aims to provide users with these guarantees. Getting together
ideas from a wide range of disciplines like mathematics, computer science, electrical en-
gineering, communication science, and even physics, researchers in cryptography have
managed to develop the necessary tools and foundations to support the notion of se-
curing information in today’s standards, which has enabled many of the applications we
all-over enjoy nowadays.

One of the most relevant of such developments lies in the invention of public key cryp-
tography. As we have mentioned, multiple techniques to protect data have been pro-
posed since ancient times. Historically, many of these proposals have been proven to be
insecure by means of different types of attacks, which led to new constructions aiming
to improve over their predecessors. However, in the case that a system was considered
secure at a given time, it was typically the case that a complicated setup or “ceremony”
needed to be conducted to arrange what would be the secret key, which would enable
further secure communication. In our modern digital era, constructions that are recog-
nized as secure still need some sort of setup, which is complicated to carry out when
there is a need for secure information and communication from a large collection of
individuals, institutions, companies, organizations, etc. Public key cryptography [46, 48]
was invented precisely as a way of securing information and communication without the
need of dedicating a setup key for every single pair of interacting parties. This break-
through has enabled the current online infrastructure we are accustomed to, permitting
online payments, distributed accounts, banking, communication, and much more.

Additional to this, cryptography has also contributed in many other great ways to help
us reach many of the achievements we enjoy today. Banks, governments, institutions
and organizations are all able to operate at a large scale thanks to existing methods to
protect the large amount of potentially sensitive information they work with. Authen-
ticating online towards a website or service is only possible thanks to the amount of
security measures put in place to prevent a different individual from doing so without
authorization. All of these advances and developments are achieved via a rigorous, open
and collaborative scientific process involving experts from all around the world. Unlike
previous approaches to securing information and communication, where proposals were
carried out by selective groups and kept in high secret with the belief that their disclo-
sure would harm security, in modern times the parties researching and adopting these
technologies tend to be open about their methods and are conscious of the value of
doing so: more minds constructing, analyzing, deploying these techniques means better
quality overall and more transparency in case of flaws, problems, or other complications.
This collaborative nature, together with the rigor of the area, is in essence what makes
of cryptography a scientific field.
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Advanced Topics in Cryptography

A big part of the theory and practice of cryptography is devoted to the study of different
technologies deployed in our world today. Standard topics include the task of encryption,
which relates to hiding information, but it is also common to consider digital signatures
and message authentication codes to ensure integrity, enable authentication and au-
thorization, and many other subjects relevant for today’s infrastructure. For centuries,
these were essentially the main tasks associated with the idea of securing information
and communication, and this continues being the case today—of course, with the added
complications of digital and worldwide-distributed technologies. Research into correct
implementations and deployments of these tools, possible attacks, improvements, en-
hancements in user experience, adaptation to modern more technologies and scenarios,
and other relevant questions, is of high importance.

However, a big portion of the field efforts is devoted not to current systems or natural
questions like simply hiding information or ensuring integrity. In recent decades, re-
searchers in cryptography have been pushing the barriers of science by considering new
problems and challenges that were not even imagined in previous times. A good exam-
ple is the idea of zero knowledge proofs, which provides us with the ability of proving
properties of certain given data, without revealing the data itself. For instance, an indi-
vidual could be able to prove to a third party that the balance in his or her bank account
is above a certain threshold without revealing the exact amount, or it could be able to
prove knowledge of the answer to a given question or challenge, without announcing the
answer itself. This may sound counterintuitive and perhaps even impossible, but such
techniques have been under research for decades already, and it is fair to say that today
they are crossing the boundary towards the real world due to their wide range of appli-
cations, most notably within the blockchain and cryptocurrency domains (which, on their
own, are interesting applications of cryptographic techniques that are gaining popularity
quite rapidly). This is because, in simple terms, zero knowledge proofs have the poten-
tial of enabling users to prove that certain transaction was made, without revealing the
specifics of the transaction itself, among several other use cases. For more information
on this, see for example [58].

Another interesting concept that at first glance seems impossible to instantiate is the
idea of computing on private data. As we have previously commented on, it is natural
to expect certain type of information to be kept hidden, such as monetary transactions,
balances, highly-sensitive information, login credentials, medical records, private con-
versations, and many, many others. However, it is commonly the case that, although this
data has to be kept private from unauthorized agents, it is ultimately revealed in one
way or another to be processed by a legitimate party, and in general, the situation in
which data has to be kept hidden perpetually is rare. In many cases, however, it is not
the full hidden data that is needed to be retrieved, but rather, a derived property from
this data. As an example, consider a set of encrypted medical records from a hospital. In
order to compute the proportion of users having certain medical condition, the hospital
(or the party executing this analysis) would need to decrypt all records and then perform
the computation, potentially revealing much more information than simply the intended
proportion.
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In today’s world, more and more information is collected every single day. With more
devices recording data every single minute, and more information about individuals be-
ing stored as they interact with new services and technologies, information has never
been so plentiful. However, not all of it is readily available due to security or privacy
concerns, as illustrated by the different examples above. Researchers in cryptography
have studied the task of performing computation over hidden or sensitive data in order
to remove this obstacle, and enable advances in multiple disciplines without violating
the notion of securing information. To achieve this, multiple ideas applicable to differ-
ent settings have been proposed. For example, functional encryption enables users to
encrypt their data, and derive special “keys” that can be used to decrypt not the entire
information, but derived data like, for example, only a small piece of the full information
or operations carried out on these.

Homomorphic encryption on the other hand promises its users to be able to encrypt, or
completely hide data, while still being able to perform certain computations on these.
The result of this process leads to an encryption of the result of the computation, which
can then be decrypted. This way, throughout the whole procedure the data is always
hidden, and the only value that is revealed is the final output. Naturally, this is a very
powerful tool with countless applications, and it has received enormous attention from
the cryptographic community. Unfortunately, in spite of inspiring recent breakthroughs
like the first actual construction of such a scheme [55], and in spite of multiple works
proposing new constructions and improving over previous ones, the efficiency of these
techniques is still too low for a wide range of relevant applications. However, many use
cases are already within reach, and the field evolves in a very rapid manner, so a more
widespread adoption of these tools can be around the corner.

Another tool that aims at enabling data analysis and aggregation on private data, that is
gaining a lot of popularity in recent years due to its simplicity, is differential privacy [47].
The main idea behind this technique lies in adding small “noise” to the data in such a way
that information about individuals cannot be discerned from the published records, but
overall, certain aggregate data can still be computed. The result will be only approximate,
as it contains some errors derived from the noise added to individual records, and there
is a trade-off between the level of privacy provided and the precision of the result.

Many other advanced techniques in cryptography with several relevant applications are
of interest to researchers, and some of them are slowly making their way into our real
world. Of particular interest to us is secure multiparty computation, which is proposed as
an alternative tool instantiate the dreamful task of performing computations on hidden
data. We discuss this set of techniques below.

Secure Multiparty Computation

Consider the following scenario. There is an individual, Alejandra, applying for a loan at
a Bank, and for doing so she needs to present a lot of information about her, like her
income, savings, investments and possessions. Alejandra is a very important business-
woman, and she does not want all of this information to be held by the bank in the case
she gets rejected, so she asks the bank to publish the algorithm they use to determine
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whether she applies for the desired credit so that she can check her situation first. On
the other hand, the bank developed one of the most advanced credit analysis algorithms,
and it is not willing to do this as that might imply they lose an important asset.

Imagine also this setting. A gender-equality campaign promoted by an NGO in certain
city aims at determining whether men and women are being paid equally, in average,
across several companies in the area. For doing so, the NGO would like these companies
to send the information regarding salaries and benefits so that they can compute the
desired statistics. However, although the NGO is only interested in learning averages
across all companies, and although these might agree with the idea of calculating such
figures, they do not feel comfortable sending all this information to a third party such as
the NGO, which could harm their operations.

Both of the examples above constitute cases of computation on data that is intended
to be kept private, and these can be brought together under the following description.
There are n parties, P1, ... ,Pn, each Pi having an input xi that they wish to maintain
secret. Furthermore, there is a function f (X1, ... , Xn), and the parties want to learn the
result z = f (x1, ... , xn). In the first example, n = 2, x1 is the set of records from Alejandra,
x2 is the bank’s algorithm and f (X1, X2) is the function that applies algorithm X2 to X1, and
in the second case n is the number of companies, each xi is the information regarding
employee salaries of the i-th company, and f is the function that determines average
income based on gender.

As in general with the problem of computing on hidden data, the problems above seem
hard to solve without the involved parties being willing to share their data. However, as
we have mentioned already, researchers in cryptography have been working on different
technologies to enable this type of computations. The parties in the scenarios above
could in principle resort, for example, to homomorphic encryption techniques, encrypt-
ing their inputs and computing on the corresponding ciphertexts, but for reasonably
meaningful functions f (·) this could be simply too inefficient. Alternatively, it is possible
that differential privacy techniques can help, specially in the second scenario where the
NGO wishes to compute different statistics on data coming from different parties, but
this could potentially affect the precision of the study.

A different approach, called secure multiparty computation, or MPC for short, aims at
developing much more efficient solutions to the problem above that do not undermine
precision or correctness. Observe for example the following in the Alejandra vs bank
scenario. Alejandra does not trust the bank to have her information completely, so she
might send the bank a “hidden” version of her data. If homomorphic encryption is used,
then the bank would be able to apply its analysis algorithm internally, but as we have
already mentioned this could place an insurmountable computational barrier. Alterna-
tively, we may notice that Alejandra, also interested in the output of the computation,
can lend a hand to interactively compute the result together with the bank. A similar
observation holds in the second scenario: although all the different companies could
simply encrypt their records and send these to the NGO for computation,1 we may notice
that if the companies are willing to collaborate to jointly compute the function, savings
in efficiency could be achieved

1It is worth noticing that for the situation in which the computation is simple additions, which is potentially
the case in this example, homomorphic encryption is actually quite efficient.
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In contrast to other approaches like homomorphic encryption, which work by hiding data
completely from anyone not holding a special key and allow anyone to compute on the
hidden data, MPC leverages the fact that there are multiple parties in the computation,
and these entities can together compute the desired function. This is achieved via an in-
teractive protocol executed by the parties that guarantees privacy of the data throughout
the whole computation. We will discuss in Chapter 1 the details of what these guarantees
exactly mean, but for now, it suffices to say that if a function is computed using an MPC
protocol, then all of its inputs remain private and only the result of the computation is
revealed. Unlike the case of homomorphic encryption, the computation is carried out by
the parties holding the inputs themselves and it cannot be delegated to any other entity
holding “encryptions”.2

Secure multiparty computation was introduced in 1982 [80] when Yao presented the con-
cept of Garbled circuits, which is a particular way of securely evaluating a function using
MPC. Since then, many different approaches have been proposed by cryptography re-
searchers in the literature, leading to a fruitful line of exploration that has produced
many interesting theoretical and practical results. Today, we have a solid understanding
in regards to what type of protocols with what form of security can exist, and many of
the state-of-the-art techniques can be used already for a wide range of applications and
use cases. For example, the gender-equality study described above actually happened
in Boston [66].

Several other applications of MPC have reached the realm of our real world, such as the
Danish sugar beet AUCTION in 2008 [21], the tax fraud detection process in Estonia in
2015 [20], and many more. Furthermore, many other relevant use cases are considered
regularly by researchers, and several prototypes are already under development. These
applications include, for example, custody of cryptographic material, training/evaluating
MLmodels.3, securing databases, secure statistics, e-voting, andmanymore. Finally, what
is also interesting is that these technologies are getting attention from institutions, orga-
nizations, and companies beyond academia, with some notable examples being Google,
VISA, Facebook, IBM, Intel and Microsoft. Moreover, many start-ups and well-established
companies are aiming at developing products based on secure multiparty computation,
such as Sharemind, Galois, Cape Privacy, Unbound tech, Partisia and Inpher.

Arithmetic Circuits

There are quite a few general approaches for designing secure computation protocols.
For example, since the introduction of the idea by Yao [80], Garbled circuits have been im-
proved in several directions and today they are much more efficient and promising than
their previous counterparts. These techniques are useful when the parties are geograph-
ically separated and have a high latency connection between them given that it requires
a small amount of communication rounds, although it typically demands high bandwidth.
Another method consists of using homomorphic encryption techniques, which is again
2As we will see in Section 5.1, this is not a real limitation in MPC since secure computation can still be
outsourced, albeit with different security guarantees as in homomorphic encryption.

3See for example the blog post Privacy-Preserving Training/Inference of Neural Networks, Part 2. https:
//bit.ly/3eRKlgM
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particularly well-suited for highly distributed computations, but as we have discussed
already tend to impose a computational burden. Finally, a very popular approach, which
is the main technique for secure multiparty computation we will focus on in this the-
sis, consists of making use of linear secret-sharing schemes, which enable the parties to
hold distributed versions of the intermediate results of the computation, maintain this
invariant throughout the evaluation process, until the result is reached. Details on this
idea are presented in subsequent sections.

Importantly, a common and central idea across all of the techniques mentioned above
consists of first representing the desired computation as an arithmetic circuit, and then
designing a method to process such circuit securely. An arithmetic circuit is a represen-
tation of a function that consists of wires and gates. The input wires are fed with the
inputs to the computation and then processed through gates to obtain the values for
the internal wires, which account for the intermediate results of the computation, until
the output wires are reached, where the result of the computation is obtained. More de-
tails are discussed in Chapter 1, but for now, it suffices to know that the gates represent
operations over a ring, an algebraic structure admitting an addition and a multiplication
operation. These constitute the allowed intermediary processes that can be applied to
the data, which is itself represented as elements over this ring.

A typical choice of ring is the set of integers modulo a prime p, which constitutes what is
called a field, since every non-zero element admits a multiplicative inverse. For example,
the set {0, 1} with the operations AND and XOR constitutes precisely a field (integers mod-
ulo 2), and arithmetic circuits defined over this structure, also known as binary circuits,
are highly important in many use cases. On the other hand, for applications involving
integer arithmetic, it is common to consider integers modulo a large prime p given that,
if the integers used in the computation can be guaranteed to be smaller than p, then
reduction modulo p does not play any effect and the resulting arithmetic becomes in
essence simple integer arithmetic, which is useful in numerous scenarios.

Most of the literature in the area of secure multiparty computation has focused on arith-
metic circuits over fields exclusively. The reason for this is two-fold. First, as described
above these structures already enable a good set of applications with immense rele-
vance in practice. Second, fields, having the very important property that every non-zero
element is invertible, are much more amenable to work with and permit the use of sev-
eral techniques and constructions that would not be possible if these properties did not
hold. Notwithstanding the above, there are other algebraic structures that could prove
useful in specific scenarios, or perhaps they can provide certain efficiency improvements,
so it is worth considering secure multiparty computation protocols over these.

Secure Computation over Z/2kZ

A useful algebraic structure that permeates all the results in this thesis is the set of
integers modulo a power of two 2k , denoted by Z/2kZ. This structure is not a field given
that not all elements admit a multiplicative inverse: for example, there is no number
such that, when multiplied by 2, we get the unity 1 modulo 2k . As a result, the vast
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majority of the existing techniques in the literature do not apply in this case. However,
there are several reasons why one would like to consider this structure. For example:

Compatibility with existing computer architectures. Although computation modulo a
large prime p can be used for applications involving integer arithmetic, it is not
directly compatible with existing computer architectures, and the reduction mod-
ulo p operation has to be implemented in software. For certain choices of p
(e.g. Mersenne primes), it is possible to design very lightweight reduction programs,
but, still, it would be more desirable to use some type of arithmetic that typical
hardware architecture use, for example, types like int32 or int64; this corresponds
precisely to arithmetic over Z/2kZ with k = 32 and k = 64, respectively.

Synergy with binary computation. It is common that, even if an application mostly in-
volves integer arithmetic, binary computation is still needed in different parts of
the process. Arithmetic modulo 2k has certain “synergy” with arithmetic modulo 2ℓ

for any ℓ ≤ k , in particular for ℓ = 1 which is the binary case, given that if two inte-
gers are congruent modulo 2k then they are congruent modulo 2ℓ too. This turns
out to lead to several benefits when converting from the Z/2kZ domain to {0, 1}
and back, among several other gains.

Knowledge barrier in secure MPC. Another important motivation to study secure multi-
party computation over Z/2kZ is to determine whether there are certain inherent
limitations of this type of rings that prevent them from having natural secure MPC
protocols over them.

As we have mentioned already, most of the existing constructions in the literature, spe-
cially these tolerating adversarial deviation from the protocol specification, operate over
finite fields, with no clear way to extend or adapt them to the ring Z/2kZ. For instance,
existing protocols will typically rely on invertibility of non-zero elements for security ar-
guments, or require the non-existence of zero divisors (that is, elements that can be
multiplied with a non-zero element so that the result is zero). To cite some concrete
examples, protocols for dishonest majority like [19, 41, 43, 62, 63] frequently make use of
one-time message authentication codes, which for security require equations of the type
X · δ + γ = 0 to have only one solution for X if δ 6= 0. This is not the case if the equation
is modulo 2k , since for example, for δ = 2k−1 and γ = 0, all even numbers are possi-
ble solutions. Another illustration of this is protocols based on Shamir secret-sharing
like [16,17,42], which require polynomial interpolation theorems that do not exactly hold
in other non-field rings such as Z/2kZ.

Main Results of this Thesis

From what we have discussed above, the general problem of how to design natural se-
cure multiparty computation protocols over Z/2kZ, study their limitations and explore
potential applications where these techniques can be beneficial, can be considered to
be an open problem. In this thesis, specifically in Part II, we present a series of tech-
niques and protocols that operate over the ring Z/2kZ, ranging over a wide variety of
MPC settings like dishonest majority, honest majority, two-thirds honest majority, and
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also small number of parties. We also discuss advanced primitives for secure compu-
tation that illustrate the benefits of working over Z/2kZ in several applications. We list
these constructions in a more detailed manner when we discuss, in page 14, the orga-
nization of this thesis. It is also important to mention that these results are based on
research papers written and published by different teams of researchers, all including
the author of this thesis. These are described in more detail in page 16.
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About this Thesis

Before we dive into themain contents of this thesis, which start in Part I below, we discuss
some general aspects of it such as broad preliminaries, the organization of the document
(which in particular lists in more detail the contributions of this thesis) and the works
this thesis is based on.

General Preliminaries and Notation

Most of the notation used in this paper will be introduced “on the fly”, that is, it will be
presented in each relevant section where it is used for the first time. However, some
general notation that we can introduce from now consists of the following:

• The set Z/MZ denotes the ring of integers modulo M , whose representatives are
taken over the set {0, ... ,M − 1}.

• All vectors, denoted by bold lowercase letters like x and y, are column vectors by
default. This is particularly relevant when dealing with multiplications with matri-
ces.

• x ∈R A means that x is sampled uniformly at random from the set A.

• For a positive integer ℓ, [ℓ] denotes the set {1, ... , ℓ}.

• For a k-bit integer x , we denote by (x [k − 1], ... , x [0]) its bit decomposition, that is,
x [i ] ∈ {0, 1} for i ∈ {0, ... , k − 1} and x =

∑k−1
i=0 x [i ] · 2i .

Finally, whenever some research work involving the author of this thesis is cited, it will
be referred to as original works.

Organization of the Thesis

This thesis is divided into two main parts: Part I, which lays down the foundations of MPC
necessary for our main contributions and also presents some general existing techniques
for MPC over finite fields, and Part II, where the actual contributions of this thesis lie and
includes the description of a series of MPC protocols over the ring Z/2kZ in a wide variety
of security settings. Each of these parts is described more thoroughly below.
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Part I: MPC Fundamentals. This first part contains some basic concepts and construc-
tion from existing secure multiparty computation literature. The purpose of this part is
two-fold. First, and this is particularly the case in Chapter 1, it introduces the background
tools necessary for the development of our contributions in Part II of this work. This
includes crucial concepts such as the definition of secure multiparty computation itself,
simulation-based security, types of security guarantees, different corruption scenarios,
etc. Furthermore, the field-based protocols presented in Chapter 2 serve as a starting
point for many of the Z/2kZ-based protocols from Part II, so it is worth keeping them at
hand for establishing differences and key ideas. Secondly, this part aims to serve as a
tool for quick reference when looking for already “standard” concepts and techniques in
the field of secure multiparty computation, and more specifically, linear-secret-sharing-
based MPC.

Chapter 1: The Theory of Multiparty Computation. This chapter presents some basic
concepts in MPC that are necessary for the development of the main results in this
thesis. This includes the description of the simulation-based security model con-
sidered in MPC, some essential impossibility results, and some general approaches
to the design of MPC protocols. The contents of this chapter are not tied to com-
putation over fields.

Chapter 2: Some Essential MPC Constructions. Finally, this chapter presents a wide
range of essential MPC protocols over fields for the cases of two-thirds honest ma-
jority (t < n/3), honest majority (t < n/2) and dishonest majority (t < n), including
passive and active security.

Part II: MPC Techniques over Z/2kZ. This second part includes the main contributions
of this thesis, and it focuses solely on computation over the ring Z/2kZ. All protocols
considered in this part satisfy security against an active adversary.

Chapter 3: Two-Thirds Honest Majority MPC over Z/2kZ. This chapter presents a per-
fectly secure protocol with abort for computation over Z/2kZ that is secure against
an adversary corrupting t parties, where t < n/3. Extensions to guaranteed output
delivery are discussed.

Chapter 4: Honest Majority MPC over Z/2kZ. This chapter presents a statistically secure
protocol with abort for computation over Z/2kZ that is secure against an adversary
corrupting t parties, where t < n/2.

Chapter 5: MPC over Z/2kZ for a Small Number of Parties. In this chapter two proto-
cols for computation over Z/2kZ with a small number of parties are considered.
The first one supports four parties and one corruption, while the second one is
designed for three parties and also one corruption. Both protocols are computa-
tionally secure, although they only make use of mild security assumptions like the
existence of PRFs and cryptographic hash functions.

Chapter 6: SPDZ2k: Dishonest Majority MPC over Z/2kZ. A protocol in the dishonest
majority setting (t < n) in the preprocessing model is discussed in this chapter.
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This means that, for the description of the protocol, we assume different prepro-
cessed data like multiplication triples plus some initialization correlation for the
authentication of shared values.

Chapter 7: Primitives for Secure Computation using edaBits. Finally, with the aim of en-
abling practical use of the techniques above, we present in this ending chapter a
series of tools to securely evaluate common primitives present in a wide range of
applications, that are suitable for use with any of the protocols presented above.

Original Works this Thesis is Based on

Throughout this work, whenever we call a reference an “original work”, we mean the
author of this thesis is listed as an author in the cited publication. Themain contributions
of this thesis are based on original works published by the author, together with different
colleagues, at several cryptography and security conferences. These are listed below in
chronological order.

Year 2018

SPDZ2k : Efficient MPC mod 2k for Dishonest Majority [32]

Authors: Ronald Cramer, Ivan Damgård, Daniel Escudero, Peter Scholl and Chaoping Xing
Published: CRYPTO’18

Abstract: Most multi-party computation protocols allow secure computation of
arithmetic circuits over a finite field, such as the integers modulo a prime. In the more
natural setting of integer computations modulo 2k , which are useful for simplifying
implementations and applications, no solutions with active security are known unless
the majority of the participants are honest.
We present a new scheme for information-theoretic MACs that are homomorphic modulo
2k , and are as efficient as the well-known standard solutions that are homomorphic over
fields. We apply this to construct an MPC protocol for dishonest majority in the prepro-
cessing model that has efficiency comparable to the well-known SPDZ protocol (Damgård
et al., CRYPTO 2012), with operations modulo 2k instead of over a field. We also construct
a matching preprocessing protocol based on oblivious transfer, which is in the style of the
MASCOT protocol (Keller et al., CCS 2016) and almost as efficient.

In this thesis: This work presents an actively secure protocol for computation over Z/2kZ
in the dishonest majority setting. In Section 6 we present the online phase of this protocol.
The offline phase of the SPDZZ2k protocol is left out of this thesis. This is instantiated in
[32] making use of Oblivious Transfer, following the template of the MASCOT protocol [62].
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Year 2019

Efficient Information-Theoretic Secure Multiparty Computation over Z/pkZ via
Galois Rings [2]

Authors: Mark Abspoel, Ronald Cramer, Ivan Damgård, Daniel Escudero and Chen Yuan
Published: TCC’19

Abstract: At CRYPTO 2018, Cramer et al. introduced a secret-sharing based protocol
called SPDZ2k that allows for secure multiparty computation (MPC) in the dishonest
majority setting over the ring of integers modulo 2k , thus solving a long-standing open
question in MPC about secure computation over rings in this setting. In this paper we
study this problem in the information-theoretic scenario. More specifically, we ask the
following question: Can we obtain information-theoretic MPC protocols that work over
rings with comparable efficiency to corresponding protocols over fields? We answer
this question in the affirmative by presenting an efficient protocol for robust Secure
Multiparty Computation over Z/pkZ (for any prime p and positive integer k) that is
perfectly secure against active adversaries corrupting a fraction of at most 1/3 players,
and a robust protocol that is statistically secure against an active adversary corrupting a
fraction of at most 1/2 players.

In this thesis: This work presents a generalization of Shamir secret-sharing to the so-
called Galois rings, and it makes use of this tool to design MPC protocols in two settings:
(1) perfect security against an active adversary corrupting t < n/3 parties, and (2) statis-
tical security against an active adversary corrupting t < n/2 parties. Both settings are
considered with guaranteed output delivery.
In this thesis, this work appears in Chapters 3 and 4, where we present MPC protocols over
Z/2kZ with information-theoretic security. The results presented here are a restricted
version of the ones in [2]. For example, we do not include guaranteed output delivery (be-
yond a short discussion in Section 3.4), we focus on the case p = 2, and several conceptual
simplifications are made.

Year 2020

Improved Primitives for MPC over Mixed Arithmetic-Binary Circuits [50]

Authors: Daniel Escudero, Satrajit Ghosh, Marcel Keller, Rahul Rachuri and Peter Scholl
Published: CRYPTO’20

Abstract: This work introduces novel techniques to improve the translation be-
tween arithmetic and binary data types in secure multi-party computation. We introduce
a new approach to performing these conversions using what we call extended doubly-
authenticated bits (edaBits), which correspond to shared integers in the arithmetic
domain whose bit decomposition is shared in the binary domain. These can be used to
considerably increase the efficiency of non-linear operations such as truncation, secure
comparison and bit-decomposition.
Our edaBits are similar to the daBits technique introduced by Rotaru et al. (Indocrypt
2019). However, we show that edaBits can be directly produced much more efficiently than
daBits, with active security, while enabling the same benefits in higher-level applications.
Our method for generating edaBits involves a novel cut-and-choose technique that may
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be of independent interest, and improves efficiency by exploiting natural, tamper-resilient
properties of binary circuits that occur in our construction. We also show how edaBits
can be applied to efficiently implement various non-linear protocols of interest, and we
thoroughly analyze their correctness for both signed and unsigned integers.
The results of this work can be applied to any corruption threshold, although they seem
best suited to dishonest majority protocols such as SPDZ. We implement and benchmark
our constructions, and experimentally verify that our technique yield a substantial in-
crease in efficiency. EdaBits save in communication by a factor that lies between 2 and 60
for secure comparisons with respect to a purely arithmetic approach, and between 2 and
25 with respect to using daBits. Improvements in throughput per second are slightly lower
but still as high as a factor of 47. We also apply our novel machinery to the tasks of bio-
metric matching and convolutional neural networks, obtaining a noticeable improvement
as well.

In this thesis: We present the applications of edaBits in Chapter 7, including bit decom-
position, truncation and integer comparison. We do not include in this thesis the exper-
imental results from [50], nor the method to generate edaBits based on a sophisticated
cut-and-choose-based analysis.

Year 2021

An Efficient Passive-to-Active Compiler for Honest-Majority MPC over Rings [4]

Authors: Mark Abspoel, Anders P. K. Dalskov, Daniel Escudero and Ariel Nof
Published: ACNS’21

Abstract: Multiparty computation (MPC) over rings such as Z232 or Z264 has re-
ceived a great deal of attention recently due to its ease of implementation and attractive
performance. Several actively secure protocols over these rings have been implemented,
for both the dishonest majority setting and the setting of three parties with one cor-
ruption. However, in the honest majority setting, no concretely efficient protocol for
arithmetic computation over rings has yet been proposed that allows for an arbitrary
number of parties.
We present a novel compiler for MPC over the ring Z2k in the honest majority setting that
turns a semi-honest protocol into an actively secure protocol with very little overhead.
The communication cost per multiplication is only twice that of the semi-honest protocol,
making the resultant actively secure protocol almost as fast.
To demonstrate the efficiency of our compiler, we implement both an optimized 3-party
variant (based on replicated secret-sharing), as well as a protocol for n parties (based
on a recent protocol from TCC 2019). For the 3-party variant, we obtain a protocol which
outperforms the previous state of the art that we can experimentally compare against.
Our n-party variant is the first implementation for this particular setting, and we show
that it performs comparably to the current state of the art over fields.

In this thesis: We present the three-party instantiation of this protocol in Section 5.4. We
do not present the generic compiler, nor the instantiation using Shamir secret-sharing for
any number of parties. We also do not include the experimental results.
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Fantastic Four: Honest-Majority Four-Party Secure Computation With Malicious
Security [36]

Authors: Anders P. K. Dalskov, Daniel Escudero and Marcel Keller
Published: USENIX’21

Abstract: In this work we introduce a novel four-party honest-majority MPC proto-
col with active security that achieves comparable efficiency to equivalent protocols in the
same setting, while having a much simpler design and not relying on function-dependent
preprocessing. Our initial protocol satisfies security with abort, but we present some
extensions to achieve guaranteed output delivery. Unlike previous works, we do not
achieve this by delegating the computation to one single party that is identified to be
honest, which is likely to hinder the adoption of these technologies as it centralizes
sensitive data. Instead, our novel approach guarantees termination of the protocol while
ensuring that no single party (honest or corrupt) learns anything beyond the output.
We implement our four-party protocol with abort in the MP-SPDZ framework for multiparty
computation and benchmark multiple applications like MNIST classification training and
ImageNet inference. Our results show that our four-party protocol performs similarly to
an efficient honest-majority three-party protocol that only provides semi-honest/passive
security, which suggest that adding a fourth party can be an effective method to achieve
active security without harming performance.

In this thesis: The four-party protocol from [36] is presented in Section 5.3. The only
contribution of that work omitted from this thesis is the experimental results and the
applications to privacy-preserving machine learning.

Efficient Information-Theoretic Multi-Party Computation over Non-Commutative
Rings [51]

Authors: Daniel Escudero and Eduardo Soria-Vazquez
Published: CRYPTO’21

Abstract: We construct the first efficient, unconditionally secure MPC protocol that
only requires black-box access to a non-commutative ring R . Previous results in the same
setting were efficient only either for a constant number of corruptions or when computing
branching programs and formulas. Our techniques are based on a generalization of
Shamir’s secret sharing to non-commutative rings, which we derive from the work on
Reed Solomon codes by Quintin, Barbier and Chabot (IEEE Transactions on Information
Theory, 2013). When the center of the ring contains a set A = {α0, ... ,αn} such that
∀i 6= j ,αi − αj ∈ R∗, the resulting secret sharing scheme is strongly multiplicative and we
can generalize existing constructions over finite fields without much trouble.
Most of our work is devoted to the case where the elements ofA do not commute with all of
R , but they just commute with each other. For such rings, the secret sharing scheme cannot
be linear “on both sides” and furthermore it is not multiplicative. Nevertheless, we are still
able to build MPC protocols with a concretely efficient online phase and black-box access
to R . As an example we consider the ringMm×m(Z/2kZ), for which whenm > log(n+1), we
obtain protocols that require around dlog(n+1)e/2 less communication and 2dlog(n+1)e
less computation than the state of the art protocol based on Circuit Amortization Friendly
Encodings (Dalskov, Lee and Soria-Vazquez, ASIACRYPT 2020).
In this setting with a “less commutative” A, our black-box preprocessing phase has a less
practical complexity of poly(n). We fix this by additionally providing specialized, concretely
efficient preprocessing protocols forMm×m(Z/2kZ) that exploit the structure of thematrix
ring.
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In this thesis: From [51] we only use in Chapters 3 and 4 the definitions and results re-
garding Shamir-secret sharing over arbitrary rings. The protocols from these chapters are
specialized to the case of computation over Z/2kZ and as such, they do not make use
of the results from [51], which are about MPC over arbitrary (possibly non-commutative)
finite rings.

Other Original Works not Included in this Thesis

Now we present other works by the author that are not present in this thesis.

Works Related to MPC over Z/2kZ. First we describe other works related to the main
topic of this thesis, that is, secure computation over Z/2kZ. These are not included in
this work, but still serve as relevant references in the topic.

New Primitives for Actively-Secure MPC over Rings with Applications to Private
Machine Learning [44]

Authors: Ivan Damgård, Daniel Escudero, Tore Frederiksen, Marcel Keller, Peter Scholl and
Nikolaj Volgushev
Published: S&P’19

Abstract: At CRYPTO 2018 Cramer et al. presented SPDZ2k, a new secret-sharing
based protocol for actively secure multi-party computation against a dishonest majority,
that works over rings instead of fields. Their protocol uses slightly more communication
than competitive schemes working over fields. However, their approach allows for
arithmetic to be carried out using native 32 or 64-bit CPU operations rather than modulo
a large prime. The authors thus conjectured that the increased communication would be
more than made up for by the increased efficiency of implementations.
In this work we answer their conjecture in the affirmative. We do so by implementing
their scheme, and designing and implementing new efficient protocols for equality test,
comparison, and truncation over rings. We further show that these operations find appli-
cation in the machine learning domain, and indeed significantly outperform their field-
based competitors. In particular, we implement and benchmark oblivious algorithms for
decision tree and support vector machine (SVM) evaluation.

Asymptotically Good Multiplicative LSSS over Galois Rings and Applications to
MPC over Z/pkZ [1]

Authors: Mark Abspoel, Ronald Cramer, Ivan Damgård, Daniel Escudero, Matthieu Ram-
baud, Chaoping Xing and Chen Yuan
Published: ASIACRYPT’19

Abstract: We study information-theoretic multiparty computation (MPC) protocols
over rings Z/pkZ that have good asymptotic communication complexity for a large
number of players. An important ingredient for such protocols is arithmetic secret
sharing, i.e., linear secret-sharing schemes with multiplicative properties. The standard
way to obtain these over fields is with a family of linear codes C , such that C , C⊥ and C 2
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are asymptotically good (strongly multiplicative). For our purposes here it suffices if the
square code C 2 is not the whole space, i.e., has codimension at least 1 (multiplicative).
Our approach is to lift such a family of codes defined over a finite field F to a Galois
ring, which is a local ring that has F as its residue field and that contains Z/pkZ as a
subring, and thus enables arithmetic that is compatible with both structures. Although
arbitrary lifts preserve the distance and dual distance of a code, as we demonstrate with a
counterexample, the multiplicative property is not preserved. We work around this issue
by showing a dedicated lift that preserves self-orthogonality (as well as distance and
dual distance), for p ≥ 3. Self-orthogonal codes are multiplicative, therefore we can use
existing results of asymptotically good self-dual codes over fields to obtain arithmetic
secret sharing over Galois rings. For p = 2 we obtain multiplicativity by using existing
techniques of secret-sharing using both C and C⊥, incurring a constant overhead. As a
result, we obtain asymptotically good arithmetic secret-sharing schemes over Galois rings.
With these schemes in hand, we extend existing field-based MPC protocols to obtain MPC
over Z/pkZ, in the setting of a submaximal adversary corrupting less than a fraction 1/2−ε
of the players, where ε > 0 is arbitrarily small. We consider 3 different corruption mod-
els. For passive and active security with abort, our protocols communicate O(n) bits per
multiplication. For full security with guaranteed output delivery we use a preprocessing
model and get O(n) bits per multiplication in the online phase and O(n log n) bits per
multiplication in the offline phase. Thus, we obtain true linear bit complexities, without
the common assumption that the ring size depends on the number of players.

Secure Evaluation of Quantized Neural Networks [37]

Authors: Anders P. K. Dalskov, Daniel Escudero and Marcel Keller
Published: PoPETs’20

Abstract: We investigate two questions in this paper: First, we ask to what extent
“MPC friendly” models are already supported by major Machine Learning frameworks
such as TensorFlow or PyTorch. Prior works provide protocols that only work on fixed-
point integers and specialized activation functions, two aspects that are not supported
by popular Machine Learning frameworks, and the need for these specialized model
representations means that it is hard, and often impossible, to use e.g., TensorFlow
to design, train and test models that later have to be evaluated securely. Second, we
ask to what extent the functionality for evaluating Neural Networks already exists in
general-purpose MPC frameworks. These frameworks have received more scrutiny, are
better documented and supported on more platforms. Furthermore, they are typically
flexible in terms of the threat model they support. In contrast, most secure evaluation
protocols in the literature are targeted to a specific threat model and their implementa-
tions are only a “proof-of-concept”, making it very hard for their adoption in practice. We
answer both of the above questions in a positive way: We observe that the quantization
techniques supported by both TensorFlow, PyTorch and MXNet can provide models in a
representation that can be evaluated securely; and moreover, that this evaluation can
be performed by a general purpose MPC framework. We perform extensive benchmarks
to understand the exact trade-offs between different corruption models, network sizes
and efficiency. These experiments provide an interesting insight into cost between active
and passive security, as well as honest and dishonest majority. Our work shows then that
the separating line between existing ML frameworks and existing MPC protocols may be
narrower than implicitly suggested by previous works.
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Secure training of decision trees with continuous attributes [5]

Authors: Mark Abspoel, Daniel Escudero and Nikolaj Volgushev
Published: PoPETs’21

Abstract: We apply multiparty computation (MPC) techniques to show, given a database
that is secret-shared among multiple mutually distrustful parties, how the parties may
obliviously construct a decision tree based on the secret data. We consider data with
continuous attributes (i.e., coming from a large domain), and develop a secure version
of a learning algorithm similar to the C4.5 or CART algorithms. Previous MPC-based work
only focused on decision tree learning with discrete attributes (De Hoogh et al. 2014).
Our starting point is to apply an existing generic MPC protocol to a standard decision
tree learning algorithm, which we then optimize in several ways. We exploit the fact that
even if we allow the data to have continuous values, which a priori might require fixed or
floating point representations, the output of the tree learning algorithm only depends on
the relative ordering of the data. By obliviously sorting the data we reduce the number
of comparisons needed per node to O(N log2 N) from the naive O(N2), where N is the
number of training records in the dataset, thus making the algorithm feasible for larger
datasets. This does however introduce a problem when duplicate values occur in the
dataset, but we manage to overcome this problem with a relatively cheap subprotocol.
We show a procedure to convert a sorting network into a permutation network of smaller
complexity, resulting in a round complexity of O(logN) per layer in the tree.
We implement our algorithm in the MP-SPDZ framework and benchmark our implementa-
tion for both passive and active three-party computation using arithmetic modulo 264. We
apply our implementation to a large scale medical dataset of ≈ 290 000 rows using ran-
dom forests, and thus demonstrate practical feasibility of using MPC for privacy-preserving
machine learning based on decision trees for large datasets.

Other works. Finally, during the course of his Ph.D. studies, the author published other
research articles that are not directly relevant for the main topic addressed in this thesis,
namely secure multiparty computation over Z/2kZ. These are listed below.

Rank Analysis of Cubic Multivariate Cryptosystems [11]

Authors: John B. Baena, Daniel Cabarcas, Daniel Escudero, Karan Khathuria and Javier A.
Verbel.
Published: PQCRYPTO’18

Abstract: In this work we analyze the security of cubic cryptographic constructions
with respect to rank weakness. We detail how to extend the big field idea from quadratic
to cubic, and show that the same rank defect occurs. We extend the min-rank problem
and propose an algorithm to solve it in this setting. We show that for fixed small rank,
the complexity is even lower than for the quadratic case. However, the rank of a cubic
polynomial in n variables can be larger than n, and in this case the algorithm is very
inefficient. We show that the rank of the differential is not necessarily smaller, rendering
this line of attack useless if the rank is large enough. Similarly, the algebraic attack is
exponential in the rank, thus useless for high rank.
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Efficient Protocols for Oblivious Linear Function Evaluation from Ring-LWE [14]

Authors: Carsten Baum, Daniel Escudero, Alberto Pedrouzo-Ulloa, Peter Scholl and Juan
Ramón Troncoso-Pastoriza.
Published: SCN’20

Abstract: An oblivious linear function evaluation protocol, or OLE, is a two-party
protocol for the function f (x) = ax + b, where a sender inputs the field elements a, b, and
a receiver inputs x and learns f (x). OLE can be used to build secret-shared multiplication,
and is an essential component of many secure computation applications including
general-purpose multi-party computation, private set intersection and more.
In this work, we present several efficient OLE protocols from the ring learning with errors
(RLWE) assumption. Technically, we build two new passively secure protocols, which build
upon recent advances in homomorphic secret sharing from (R)LWE (Boyle et al., Eurocrypt
2019), with optimizations tailored to the setting of OLE. We upgrade these to active secu-
rity using efficient amortized zero-knowledge techniques for lattice relations (Baum et al.,
Crypto 2018), and design new variants of zero-knowledge arguments that are necessary
for some of our constructions.
Our protocols offer several advantages over existing constructions. Firstly, they have the
lowest communication complexity amongst previous, practical protocols from RLWE and
other assumptions; secondly, they are conceptually very simple, and have just one round
of interaction for the case of OLE where b is randomly chosen. We demonstrate this with
an implementation of one of our passively secure protocols, which can performmore than
1 million OLEs per second over the ring Zm , for a 120-bit modulusm, on standard hardware.

ImprovedThreshold Signatures, Proactive Secret Sharing, and Input Certification
from LSS Isomorphisms [9]

Authors: Diego F. Aranha, Anders Dalskov, Daniel Escudero and Claudio Orlandi.
Published: LATINCRYPT’21

Abstract: In this paper we present a series of applications stemming from a for-
mal treatment of linear secret-sharing isomorphisms, which are linear transformations
between different secret-sharing schemes defined over vector spaces over a field F and
allow for efficient multiparty conversion from one secret-sharing scheme to the other.
This concept generalizes the folklore idea that moving from a secret-sharing scheme over
Fp to a secret sharing “in the exponent” can be done non-interactively by multiplying the
share unto a generator of e.g., an elliptic curve group. We generalize this idea and show
that it can also be used to compute arbitrary bilinear maps and in particular pairings
over elliptic curves.
We include the following practical applications originating from our framework: First we
show how to securely realize the Pointcheval-Sanders signature scheme (CT-RSA 2016)
in MPC. Second we present a construction for dynamic proactive secret-sharing which
outperforms the current state of the art from CCS 2019. Third we present a construction for
MPC input certification using digital signatures that we show experimentally to outperform
the previous best solution in this area.

Honest Majority MPC with Abort with Minimal Online Communication [35]

Authors: Anders Dalskov and Daniel Escudero.
Published: LATINCRYPT’21

Abstract: In this work we focus on improving the communication complexity of the
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online phase of honest majority MPC protocols. To this end, we present a general and
simple method to compile arbitrary secret-sharing-based passively secure protocols
defined over an arbitrary ring that are secure up to additive attacks in a malicious setting,
to actively secure protocols with abort. The resulting protocol has a total communication
complexity in the online phase of 1.5(n − 1) shares, which amounts to 1.5 shares per
party asymptotically. An important aspect of our techniques is that they can be seen as
generalization of ideas that have been used in other works in a rather ad-hoc manner
for different secret-sharing protocols. Thus, our work serves as a way of unifying key
ideas in recent honest majority protocols, to understand better the core techniques and
similarities among these works. Furthermore, for n = 3, when instantiated with replicated
secret-sharing-based protocols (Araki et al. CCS 2016), the communication complexity in
the online phase amounts to only 1 ring element per party, matching the communication
complexity of the BLAZE protocol (Patra & Suresh, NDSS 2020), while having a much
simpler design.

Information-Theoretically Secure MPC against Mixed Dynamic Adversaries [39]

Authors: Ivan Damgård, Daniel Escudero and Divya Ravi.
Published: TCC’21

Abstract: In this work we consider information-theoretically secure MPC against an
mixed adversary who can corrupt tp parties passively, ta parties actively, and can make tf
parties fail-stop. With perfect security, it is known that every function can be computed
securely if and only if 3ta + 2tp + tf < n, and for statistical security the bound is
2ta + 2tp + tf < n.
These results say that for each given set of parameters (ta, tp, tf ) respecting the inequality,
there exists a protocol secure against this particular choice of corruption thresholds. In
this work we consider a dynamic adversary. Here, the goal is a single protocol that is
secure, no matter which set of corruption thresholds (ta, tp, tf ) from a certain class is
chosen by the adversary. A dynamic adversary can choose a corruption strategy after
seeing the protocol and so is much stronger than a standard adversary.
Dynamically secure protocols have been considered before for computational security.
Also the information theoretic case has been studied, but only considering non-threshold
general adversaries, leading to inefficient protocols.
We consider threshold dynamic adversaries and information theoretic security. For statis-
tical security we show that efficient dynamic secure function evaluation (SFE) is possible
if and only if 2ta+2tp+ tf < n, but any dynamically secure protocol must use Ω(n) rounds,
even if only fairness is required. Further, general reactive MPC is possible if we assume in
addition that 2ta + 2tf ≤ n, but fair reactive MPC only requires 2ta + 2tp + tf < n.
For perfect security we show that both dynamic SFE and verifiable secret sharing (VSS) are
impossible if we only assume 3ta + 2tp + tf < n and remain impossible even if we also
assume tf = 0. On the other hand, perfect dynamic SFE with guaranteed output delivery
(G.O.D.) is possible when either tp = 0 or ta = 0 i.e. if instead we assume 3ta + tf < n
or 2tp + tf < n. Further, perfect dynamic VSS with G.O.D. is possible under the additional
conditions 3ta+3/2tf ≤ n or 2tp+2tf ≤ n. These conditions are also sufficient for dynamic
perfect reactive MPC.

Improved single-round secure multiplication using regenerating codes [3]

Authors: Mark Abspoel, Ronald Cramer, Daniel Escudero, Ivan Damgård and Chaoping
Xing.
Published: ASIACRYPT’21
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Abstract: In 2016, Guruswami and Wootters showed Shamir’s secret-sharing scheme
defined over an extension field has a regenerating property. Namely, we can compress
each share to an element of the base field by applying a linear form, such that the secret
is determined by a linear combination of the compressed shares. Immediately it seemed
like an application to improve the complexity of unconditionally secure multiparty
computation must be imminent; however, thus far, no result has been published.
We present the first application of regenerating codes to MPC, and show that its utility lies
in reducing the number of rounds. Concretely, we present a protocol that obliviously eval-
uates a depth-d arithmetic circuit in d +O(1) rounds, in the amortized setting of parallel
evaluations, with o(n2) ring elements communicated per multiplication. Our protocol is
secure against the maximal adversary corrupting t < n/2 parties. All existing approaches
in this setting have complexity Ω(n2).
Moreover, we extend some of the theory on regenerating codes to Galois rings. It was
already known that the repair property of MDS codes over fields can be fully characterized
in terms of its dual code. We show this characterization extends to linear codes over
Galois rings, and use it to show the result of Guruswami and Wootters also holds true for
Shamir’s scheme over Galois rings.
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Chapter 1

The Theory of Multiparty Computation

The goal of this initial chapter is to introduce the reader to some of the most relevant
existing theoretical concepts in the area of secure multiparty computation. First, in Sec-
tion 1.1, we present a general and high level introduction to some of the most important
concepts and ideas in MPC, like the notion of an adversary, and different settings and
goals that are typically considered in MPC. Then, in Section 1.2, we present the idea of
simulation-based security, which is the formal mathematical machinery necessary to
properly define the concepts discussed in Section 1.1. This tool allows us to approach the
task of securely computing a given function from a mathematical point of view, enabling
us to obtain precise and explicit security results. Finally, we discuss in Section 1.3 some
of the most relevant results in the theory of secure multiparty computation, which are
related to the types of security notions that can be achieved in the three main distinctive
settings: two-thirds honest majority, honest majority, and dishonest majority.

1.1 A General Introduction to MPC

In secure multiparty computation we consider a setting where n parties P1, ... ,Pn, each
Pi having an input xi , want to securely compute a given function f (X1, ... , Xn), in such a
way that only the value z = f (x1, ... , xn) is learned, and nothing else about x1, ... , xn is
revealed. This is intended to be achieved by means of an MPC protocol, which is a set
of rules that the parties execute, involving some local computation plus some exchange
of messages. These rules depend on the inputs of each party, and they are typically
randomized, meaning that they usually depend on some random bits sampled by each
party as well.

Ideally, nothing should be learned about the inputs x1, ... , xn, except perhaps from what
is leaked about the output z .1 Towards formalizing this notion, it is useful to think of
an ideal world in which there is a trusted third party who receives the inputs from the
parties, computes the result z , and sends this to all the participants, promising to perform
the correct computation and not to leak absolutely anything else besides z . The goal of
a secure multiparty computation protocol is to instantiate this type of scenario without

1Notice that it might be the case that the output z reveals a lot of information about some of the inputs,
which is obvious for instance if the function f is defined as X1 = f (X1, ... , Xn). This is acceptable in the
context of MPC given that the only goal is to protect the inputs x1, ... , xn , except possibly for what is
leaked by the output z itself.
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the presence of a trusted third party, only involving communication among the parties
holding the inputs themselves. In other words, a protocol must match the behavior of
the ideal world in what we call the real world. As we will see in Section 1.2, this ideal/real
world paradigm is not only useful to understand at a high level what the guarantees
of a secure multiparty computation protocol should be, but it also serves as the core
idea behind a proper mathematical formalization, which enables the use of rigorous
definitions and theorems.

1.1.1 Adversaries and their Power

In a wide range of notions and constructions across all of cryptography, it is very common
to formalize the idea of something being “secure” by considering the idea of an adversary,
which is an entity who tries to break whatever property we are trying to protect, and
should not be able to succeed with reasonable probability. This adversary is simply an
algorithm, a mathematical object that can be formally defined. For example, in the case
of encryption it is common to define security (at least, one particular notion among
several other variants) by requiring that no (typically efficient) adversary can win at a
“game” that is supposed to represent a real-world scenario where an attacker gets to
interact with an already-deployed encryption scheme. In this game, the adversary gets
to choose two different messages, and it gets an encryption with an unknown random key
of one of these two plaintexts, chosen at random. It is the adversary’s goal to determine
which of the two messages was encrypted. If no adversary, which in essence means no
algorithm, is able to significantly win at this game, then, intuitively, it must be the case
that the encryption scheme is good at its job of hiding data, since encryptions of different
messages look indistinguishable.

Many other notions in cryptography, like the security of digital signatures or key exchange
mechanisms, are formalized via adversaries attacking the system, and secure multiparty
computation is naturally no exception. Consider an execution of a secure multiparty
computation protocol where n parties P1, ... ,Pn engage in a set of communication and
computation rules, exchange messages, and return a result at the end of this interaction.
Who should be the adversary in such scenario? As the name implies, an adversary is a
“rival” whose aim is to break a given security property we are trying to maintain, in this
case, the fact that the inputs of the parties remain private, except from the output z .
For example, we can consider one of the parties in the execution of the protocol to be
the adversary, and what we could require is that this party, after the interaction with
the other participants, this “adversarial party” does not learn anything about the other
parties’ inputs, besides what is leaked by the output of the computation.

Let us assume that a given secure computation protocol satisfies the notion that no party,
regarded as the adversary, can learn anything about the inputs from the other parties,
as considered above (assume for now that we can appropriately define the idea of “not
learning more than what is leaked by the output”, which is achieved via simulation-based
security as considered in Section 1.2). A natural question is, what would such notion
reflect in practice? In principle, it is very powerful: if any of the parties behaves as
an adversary, trying to learn anything from the other parties’ inputs (besides what is
leaked by the output), this party will fail at doing so. However, it fails to capture a very
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important “attack” that could easily happen in a practical scenario, and it has to do with
the possibility of a collusion attack. Imagine that, among the n parties participating in
the protocol, there are two which, for different reasons, might benefit from learning the
inputs from the remaining parties. These two parties may decide to trust each other and
collude, that is, work together, perhaps by sharing out-of-band messages to each other,
if this somehow helps them in their task of learning information they are not allowed
to gather. Alternatively, if by joining the internal data of different parties it is possible
to break privacy, then an external attacker that breaks into several of the participating
machines can learn private information.

In light of the scenario described above, which could easily appear in practice, it becomes
important to somehow incorporate into our adversarial definition the idea of parties col-
luding, working together, sharing information to each other, in order to break the privacy
of the remaining parties. One could in principle achieve this by considering different
adversaries that somehow communicate to each other, but it turns out to be a much
simpler way if, instead of following this approach, we consider a single adversary, as be-
fore, that, instead of simply playing the role of an individual party, it completely controls
a given set of parties. This attacker plays a similar role as the “hacker” described in our
previous example, and it also serves to model the case in which two or more parties
collude voluntarily, since the strategy they follow in their collusion process can be mod-
eled as an algorithm, which can be ultimately regarded an adversary on its own. Finally,
notice that this notion strictly generalizes the one we considered initially above, where
a protocol was secure if no single party acting as an adversary could violate privacy. This
case corresponds to the scenario when an adversary corrupts a set containing only one
single party.

With this idea of what the adversary role is in the execution of a secure multiparty com-
putation protocol, we proceed to describe and categorize many of the possible different
variants that such adversary can present. Before we do this, however, we introduce some
notation that will be used throughout this work. Suppose that the n parties participating
in a given protocol execution is P1, ... ,Pn. The set of indexes in [n] corresponding to cor-
rupted parties is denoted by C, while the set of indexes corresponding to the remaining
parties, which are also called honest parties, is denoted by H = [n] \ C.

1.1.1.1 Possible Corrupted Sets

In our first naive notion of security a protocol was considered secure if any adversary,
corrupting any single one of the parties P1, ... ,Pn participating in the protocol, cannot
learn anything about the remaining parties’ inputs. Observe that in this case the protocol
should remain secure no matter what party is corrupted. If, for example, we only require
security against adversaries corrupting one of the parties among P2, ... ,Pn (so P1 is never
corrupted), a simple and trivial protocol would consist of the parties sending their inputs
to P1, who computes the function and returns the result. This satisfies the security notion
since we only require that the adversary does not learn any extra information about the
honest parties’ inputs, which is trivially guaranteed since P1 is always honest. We see
then that, depending on which parties are allowed to be corrupted by the adversary,
different protocols might exist.
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As we have mentioned in previous paragraphs, in our more general context the adversary
is not restricted to corrupting one single party but rather it can corrupt a set of parties
potentially having size greater than one. However, in order to define security, we require
the protocol to protect the privacy of the honest parties’ inputs in the event in which
the adversary corrupts a given set of parties. A crucial question that appears under this
consideration is then the following: which sets of parties can the adversary corrupt?
In the single-corruption case from above these possible sets are {P1}, ... , {Pn}, and as
before, if the collection of possible sets the adversary can corrupt is too simple (e.g. all
the possible sets miss one specific party, which means that this party is always honest),
the task of designing secure multiparty computation protocols may become trivial.

In general, the collection of possible sets the adversary can corrupt is a security property
of a given protocol. Such collection, which is simply a set of subsets of [n], is called an ad-
versarial structure, and different secure multiparty computation protocols are designed
with the goal of withstanding corruptions from different adversarial structures. Below
we consider some relevant adversarial structures. Before we do this, however, we note
that, if a set B is part of a given adversarial structure, then it makes sense to include any
subset A ⊆ B into the structure as well, given that a protocol cannot be secure against
corruptions in A if it is insecure by the adversary corrupting a smaller subset. Given this,
we define adversarial structures as antimonotone collections of subsets of [n], meaning
that if B is in the collection, every set A ⊆ B has to be part of it too.

Q2 and Q3 Adversarial Structures. The ability to consider general adversarial struc-
tures is very useful in scenarios in which there is a lot of asymmetry among the “im-
portance” of the different parties. For example, consider a setting with three parties
P1,P2,P3, and suppose for simplicity in the argument that they have no reasons or moti-
vations to voluntarily collude. However, there is still the concern that an attacker breaks
into some of these machines. Suppose now that P1 is very well protected, but P2 and P3

have a weaker safeguards. In such a setting we might consider a protocol that withstands
the adversarial structure {{P1}, {P2}, {P3}, {P2,P3}}. This way, if the adversary wants to
break the system then it has to corrupt a set of parties outside this structure, so either P1

and one of P2 or P3. Since {P2,P3} is part of the adversary structure, even if the attacker
breaks into the two weaker machines P2 and P3, it cannot still breach privacy.

There is a long and important line of study into how to design securemultiparty computa-
tion protocols for general adversarial structures, starting with the work of [33]. However,
among all possible adversarial structures, there are two types that are particularly im-
portant. We will make more explicit the relevance of these two particular structures later
in Section 1.3.

Q2 structures. An adversarial structure is Q2 if, for every A1 and A2 in the structure,
A1 ∪ A2 6= {P1, ... ,Pn}.

Q3 structures. An adversarial structure is Q3 if, for every A1,A2 and A3 in the structure,
A1 ∪ A2 ∪ A3 6= {P1, ... ,Pn}.
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Threshold Adversarial Structures. In settings in which there is more “symmetry” among
the parties, and there are no obvious reasons to put more weight into how easy it is for
one party to get broken into, or into how likely it is that a given party colludes, with
respect to another party, a natural adversarial structure is the threshold structure. This
measures the adversary’s capabilities by how many parties it can corrupt simultane-
ously, without making any distinction among the parties whatsoever. More concretely, a
threshold adversary structure is parameterized by a value 0 < t < n, and it consists of
all the subsets of [n] of size at most t . Intuitively, a protocol that is secure against such
structure guarantees privacy of the honest parties’ inputs as long as the adversary does
not corrupt more than t parties.2

Below we discuss three types of threshold adversarial structures, depending on their
threshold value t . The main importance of these distinctions will be made clear in Sec-
tion 1.3, when we discuss several fundamental results in the feasibility of secure multi-
party computation protocols depending on each of these cases.

Honest majority, t < n/2. In this case the adversary is assumed to corrupt at most
t < n/2 parties, so, no matter what set of corrupted parties is chosen, the set
of honest parties constitute a majority. It is easy to verify that the resulting adver-
sarial structure is Q2.

Two-thirds honest majority, t < n/3. Now the adversary is assumed to corrupt even less
parties, at most t < n/3. Here the set of honest parties is always at least two-
thirds the total number of parties. It is easy to verify that the resulting adversarial
structure is Q3.

Dishonest majority, t < n. This is the scenario where the no special bound on t holds, so
t can take the largest possible value, t = n−1. In this case the adversary can corrupt
any set containing all but one party, and a protocol secure in this setting would still
guarantee privacy to this remaining party. This is the strongest possible setting:
intuitively, each party knows individually that their inputs are secure, even if all the
other parties collude. This is not the case with any of the previous scenarios (and
in general, if t < n− 2), since in these cases the adversary can break the privacy of
an individual party’s input by corrupting a set with at least t + 1 parties.

We remark that, throughout this thesis, our only focus lies in threshold adversarial struc-
tures.

Remark 1.1 (Maximal vs non-maximal adversaries). Intuitively, when designing secure
multiparty computation protocols in any of the threshold settings listed above, it is better
to consider the maximum possible value of t that respects the given bound. For example,
in the honest majority setting where t < n/2, the best is to choose t as the largest integer
that respects this bound, i.e. t =

⌈
n
2 − 1

⌉
, since in this case the resulting protocol tolerates

the largest number of corruptions while still falling within the honest majority setting.3

2Notice that t lies between 1 and n − 1. If t = 0 then there are no corruptions and the task of secure
multiparty computation becomes trivial. Also, if t = n, then all parties are corrupted so there are no
honest parties’ inputs to protect the privacy of.

3It is important to mention that having a gap between t and n/2 (or n/3) is sometimes useful as it allows
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Motivated by the above, it is quite common, and in fact, we do so in several opportunities
in this thesis, to assume for simplicity that the adversary corrupts exactly t parties, and
that t is as large as possible while respecting the bound under consideration. At an
intuitive level, this should be without loss of generalization given that, if a protocol is
secure against an adversary that corrupts exactly, say,

⌈
n
2 − 1

⌉
parties, then the protocol

should remain secure even if the adversary corrupts less, since this means that now the
adversary is less powerful.

Unfortunately, although such reasoning makes a lot of sense, the mathematical model
under which the concept of MPC is formalized, which is discussed in Section 1.2, does not
satisfied this property. More precisely, there are protocols that are secure against

⌈
n
2 − 1

⌉
corruptions, but an adversary corrupting less than this amount can somehow break the
protocol. This counter-intuitive nuisance is hardly an issue in practice, but it is important
to be aware of it. We revisit this issue when we assume amaximal adversary in this thesis.

1.1.1.2 Type of Corruption

Our current corruption model is intended to represent a set of parties colluding, ex-
changing messages out-of-band, sharing their internal state, and possibly coordinated
by an attacker, which is in fact how the proper adversarial model is formalized. Recall
that a secure multiparty computation protocol is in essence a set of computation and
communication rules that the parties have to follow in order to securely compute a given
function. So far, although the adversary is able to see all the internal state of the corrupt
parties, including messages received and sent by these, we have implicitly assumed that
the corrupt parties follow the rules specified by the protocol faithfully. This corresponds
to the notion of a passive of semi-honest adversary, and it is intended to reflect a setting
in which all of the parties are assumed to follow the protocol instructions, but even if
an attacker is able to access the internal information from a given subset of the parties
(within certain adversarial structure), the protocol should guarantee privacy of the inputs
from the remaining parties.

Unfortunately, it is in principle not possible for the parties to somehow verify that the
other participants are following the protocol specification faithfully. This is because, ulti-
mately, all the different parties see from other participants are messages which, although
depend on their private inputs, are supposed to reveal nothing about these values from
the security definition itself. From this, if an adversary can gain additional information by
modifying the behavior of the corrupt parties during the execution of the protocol, per-
haps in a way in which such misconduct goes undetected towards the honest parties, a
need to protect securemultiparty computation protocols against such actions appears.

An adversary with the more advanced and realistic capabilities described above is re-
ferred to as an active or malicious adversary, and protocols that are secure against such
type of adversarial behavior are the most ideal to deploy in much of the potential use
cases for securemultiparty computation, given that it prevents corrupt parties from caus-
ing any harm during the execution of the protocol, even if they internally deviate from

the use ofpacked secret sharing, a technique to improve efficiency of MPC protocols in these scenarios
[40, 52].
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the specified rules, which in principle they would be able to do without being detected.
However, although these protocols are stronger than their passively secure counterparts,
they are naturally much harder to construct, plus they tend to add certain overhead in
terms of performance.

So, to summarize:

Passive/semi-honest corruption. An adversary is said to be passive if the behavior of
the corrupt parties during the protocol execution is exactly as specified by the
protocol description. The adversary sees the internal state of the corrupt parties,
including in/out messages, input and internal random coins, but it cannot alter
their behavior.

Active/malicious corruption. An adversary is said to be active if it controls the corrupt
parties completely, including possibly modifying their actions during the execution
of the protocol.

In this work we will consider both passive and active adversaries. The description of
existing MPC constructions (over fields) in Chapter 2 considers both cases, while the
protocols (over Z/2kZ) presented in Part II of this thesis are all set in the scenario in
which the adversary is active.

1.1.2 Privacy Guarantees

Recapping what we have seen so far, our intuitive security definition for secure multi-
party computation protocols requires that an adversary, corrupting (either passively or
actively) a set from an adversarial structure, which is simply a collection of possible cor-
ruption sets, learns nothing from the honest parties’ inputs, which, as will be made more
precise in Section 1.2, is formalized by requiring that the protocol execution somehow
looks “close” to an ideal world in which a trusted third party is used. In this section
we explore in a bit more detail what the concept of these two executions being “close”
means. The description here is rather verbal and intuitive, and it is only made more
precise in Section 1.2 where we properly define the idea of simulation-based security.

Perfect security. In this case the real and ideal executions follow the exact same dis-
tribution, so, from the point of view of the adversary, nothing is learned about
the honest parties’ inputs from the protocol execution. This is regardless of the
computational resources available to the adversary.

Statistical security. This is a slightly weaker notion, and it is also called unconditional
security. In this case the real and ideal worlds have statistically close distributions,
meaning that the distributions from the real and ideal worlds may not be the same,
but are very close. More precisely, by controlling certain parameter of the given
construction, it is possible to shorten the gap between these two distributions by
any desired amount. To illustrate what this type of security entails, it is useful to
think, as an example, of an MPC construction that achieves the following: the real
and ideal worlds follow the exact same distribution, except that there is a very
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small chance (regardless of its computational powers) in which the adversary can
completely break privacy of the honest parties’ inputs in the real world. In this
case, security would be statistical.

Computational security. The two security notions above are very powerful, but as we
will see in Section 1.3, they are not always possible to achieve. As a result, and
motivated by practice, it is useful to restrict security to only efficient adversaries,
that is, adversaries that make use of a bounded amount of resources, which are
formally modeled as algorithms running in polynomial time (in terms of a security
parameter). In a computationally secure protocol, the distributions from the real
and ideal worlds are indistinguishable, but only as long as the adversary is not
infinitely powerful, which is enough for practical use. As an example, consider an
MPC protocol in which some party has to send an encryption of its input using
a secret key. Although this might be hard to break for an adversary not knowing
the secret key, an attacker with infinite resources can brute-force the ciphertext to
recover sensitive information.

The first two notions, perfect and statistical security, are commonly referred to as
information-theoretic security. It is typically the case that protocols satisfying these no-
tions of security tend to be more efficient than computationally secure ones, given that
they are usually simpler and do not rely on certain parameters that aim at making a given
computational problem hard. However, as we have mentioned, information-theoretic se-
curity is not always possible to achieve.

1.1.3 Output Guarantees

Recall that, to define security of secure multiparty computation protocols, we have re-
sorted to comparing the real world, where the execution of the given protocol takes place,
to an ideal world where the desired function is computed by a trusted third party, who
receives the inputs from the parties and promises to reveal only the output. Defined in
this way, the parties have the guarantee in the real world that their inputs are as pro-
tected in the actual interaction as in the ideal world, where only the output is revealed.
However, another subtle property of the trusted third party is that, as described above, it
always returns the correct output of the computation to all of the parties. Unfortunately,
as we will see in Section 1.3, this notion, which is called guaranteed output delivery in
the literature, is not always possible to achieve in the real world. In some settings, for
example, the best that can be achieved is that if the parties obtain a result, it is guaran-
teed to be the correct one, but it could be the case that no party obtains any result at
all.

From the above, it becomes necessary to relax the requirements in the ideal world regard-
ing the output of the computation. To this end, we present the following three notions
related to this. We remark that, in any of the three concepts below, whenever the parties
obtain an output it is guaranteed to be the correct one.

Guaranteed output delivery. As described above, in this case all the parties are guaran-
teed to obtain the output, regardless of the actions that the corrupt parties perform.
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Fairness. In this case it could happen that the adversary causes the honest parties to
not obtain the output, which is referred to as causing the parties to abort. However,
if this happens, then the corrupt parties (and hence the adversary) are guaranteed
to also not learn the output.

Security with abort. In this scenario it can be the case that the adversary denies the
honest parties from learning the output, while the corrupt partiesmay still learn the
result. Furthermore, we identify two possible variants: in security with unanimous
abort all the honest parties are guaranteed to either receive the output or abort
altogether, and in security with selective abort, which is even weaker, the adversary
can choose which honest parties receive output and which honest parties abort.

If the adversary is passive, the corrupt parties will behave exactly as if they were hon-
est parties, following the protocol specification, so in this case it always holds that the
protocol terminates with the correct output, which in particular means that, trivially,
guaranteed output delivery is obtained.

Additionally, we note that, although the most desired property is guaranteed output de-
livery, which ensures availability of the output under all possible attacks, the notion of
fairness is already very useful in practice, as the adversary does not learn or gain any-
thing from stopping the (honest) parties from learning the output. For example, if the
computation under consideration is distributed voting, a protocol that simply satisfies
security with abort may allow the adversary to first learn the outcome of the voting, and
decide to deny the honest parties from learning this if desired. A protocol with fairness,
however, may simply disrupt the computation (which is of course a problem of a differ-
ent nature on its own), but the adversary cannot decide to cause an abort depending on
the output of the computation.

1.1.4 Different Functions to be Computed

Another important consideration when designing secure multiparty computation pro-
tocols is what type of computations they are intended to operate with. In this section
we provide a general discussion on the topic, differentiating between several important
types of computations.

1.1.4.1 Public-Output vs Private-Output.

So far, our description of the function to be computed has been f (X1, ... , Xn), with z
being the output of applying this function to the inputs of the parties, x1, ... , xn, which is
the value that all parties learn at the end of the execution of a given secure multiparty
computation protocol. This scenario is referred to as the public-output setting, since
there is only one result, that all parties learn equally. Alternatively, we may consider the
case where each party receives a different result. In this case, we regard the function
as producing n different outputs (z1, ... , zn), where each party Pi is intended to learn
(only) zi . Clearly, this scenario, called the private-output setting, is a generalization of
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the public-output case (by taking zi = z for i ∈ [n]), but it is fortunately not much harder
to achieve. The reason for this is that, given an MPC protocol for public-output functions,
each party can simply provide as an additional input a secret-key only known to this
participant, and the function to be computed can be modified so that all the outputs are
returned to all parties, except that output zi is “encrypted” under the key provided by
party Pi . This way, only this party can recover its corresponding output.

In this thesis we sometimes consider the public-output case (specially when computing
arithmetic circuits), and in some other occasions we consider the private-output setting
(when in the context of the arithmetic black box model). See Section 1.2.6.2 for details.

1.1.4.2 Reactive vs Non-Reactive Functionalities

A reactive functionality is one that enables the parties to learn “partial results” of the
computation, and continue the process in a way that perhaps depend on these inter-
mediate results, plus possibly new inputs. A good example of this type of computations
is given by, for example, a commitment scheme, which enables a party to commit to a
given value without revealing its contents, to do so at a later stage without the ability
of announcing a different value to the one committed earlier. On the other hand, in a
non-reactive functionality the parties simply provide their inputs at the beginning of the
protocol, and obtain the result at the end of the execution. There are many relevant ap-
plications that can be phrased as non-reactive functionalities, like data processing tasks,
distributed voting and auctions, and many others.

Clearly, reactive secure multiparty computation is a more general setting than the non-
reactive case. However, it is generally the case that one can obtain a secure multiparty
computation for reactive functionalities from a protocol that only supports non-reactive
ones by making use of a technique called verifiable secret-sharing. In short, this tech-
nique enables the parties to obtain a “shared state” of each checkpoint in a reactive
computation using the non-reactive protocol, which can be reconstructed to obtain par-
tial outputs. Although there are certain scenarios in which non-reactive computation
is possible while reactive computation is not, it is generally the case that the two no-
tions are back-to-back, so the difference between the two is typically irrelevant for the
discussion of different secure multiparty computation protocols.

1.1.4.3 General vs Special-Purpose MPC

Another relevant distinction for secure multiparty computation protocols lies in whether
they are designed to support any arbitrary function, or if they are tailored to specific func-
tions. The former family is typically referred to as general-purpose MPC protocols, while
the latter, being more targeted to particular computations, is called special-purpose
MPC.

It is fair to say that most of the proposed secure multiparty computation protocols in
the literature correspond to general-purpose constructions. However, at first glance, this
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may sound as an extremely difficult task: how can a single protocol support any arbitrary
computation? The catch is in the way that computations are represented, which involves
the concept of arithmetic circuits, discussed below.

Arithmetic Circuits and General-Purpose MPC. As we have mentioned above, re-
searchers in the field of secure multiparty computation have focused mostly in designing
general-purpose MPC protocols, which are intended to securely compute any function-
ality that the parties wish to compute. This is possible thanks to an abstraction known
as arithmetic circuits, which concisely captures any possible function in terms of rather
simple operations over certain algebraic structure.

Consider a finite field F, and let f : Fn 7→ F be any function defined over this field. A
well known fact in field theory is that every such function can be written as an arithmetic
circuits, which in formal terms is simply a directed acyclic graph with labeled nodes.
Denoting by (i , o) a node that has fan-in i and fan-in o , every node is either of the type
(0, 1), (2, 1), or (1, 0). (0, 1) nodes are called the input gates, and they model the inputs
to the computation. (2, 1) nodes are call the operation gates, and they represent field
operations. A field has two main operations, addition (+) and multiplication (·), and this
is reflected in the fact that there are two types of gates addition andmultiplication gates,
each corresponding to a different operation. Finally, (1, 0) nodes are the output gates.

Edges are also called wires, and in an actual execution of the function f , each wire has
associated a value to it corresponding to an intermediate result of the computation.
Wires outgoing from an input gate are associated to the actual value provided as input,
corresponding to the given input gate. Wires leaving an operation gate are matched
with the values corresponding to the result of applying the corresponding operation
(addition or multiplication) to the (associated values to the) incoming wires to the gate
at hand. Finally, the wire that goes into the output gate is precisely the result of the
computation.

With this tool at hand, designing a general-purpose secure multiparty computation pro-
tocol reduces to constructing a protocol for securely computing arithmetic circuits ex-
clusively, which is what most of the research in the field of MPC is concerned with. Fur-
thermore, as we will see in Section 2.1, among all different techniques to design se-
cure multiparty computation protocols, there is a promising general template known as
secret-sharing-based MPC that, in a nutshell, works by letting the parties have a “hidden”
representation of the inputs to the computation, together with some methods to obtain
a hidden version of the output of each operation gate, assuming the inputs are already
hidden. Eventually, the output is reached in hidden form, point in which the parties can
“reveal” it so that the result of the computation is learned. From this template, the task
of secure multiparty computation reduces to designing a method to (1) keep “hidden”
versions of different values, (2) obtain a hidden version of the result of an addition or
a multiplication, assuming the inputs are already hidden, and (3) reveal a hidden value.
This, at a first glance, seems more feasible than the daunting task of securely computing
any conceivable function.

General-purpose MPC protocols are particularly useful in theory as they show what type
of computations are possible, which, accompanied with impossibility results, provide us
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with a complete landscape of the sorts of computations we can hope for. However, their
reachability in practice can be, in principle, more questioned. For instance, recall that
these protocols work by first representing the desired computation as an arithmetic cir-
cuit over a finite field, which is simply a combination of additions andmultiplications over
this structure, but it is not at all clear what type of practical applications lend themselves
to be efficiently expressed as an arithmetic circuit. As an starting example, applications
that involve real-valued arithmetic, such as these in the domain of machine learning, for
illustration, are more naturally written in terms of operations over the real numbers, in-
cluding possibly additional processes that go beyond basic additions and multiplications
(e.g. taking square roots, applying sine or cosine, or even non-mathematical operations
such as flipping the bits of the given value in the bit-representation).

In spite of the above, many general-purpose MPC protocols are not a mere theoretical
tool, as they tend to be the basis, or the starting point, of a wide range of more specialized
protocols. This is achieved by adding certain subprotocols for specific operations that ap-
pear repeatedly across multiple applications, such as the case of real-valued arithmetic
illustrated above. We will get the chance to discuss this in more detail in Chapter 7. Addi-
tionally, the existence of highly-efficient general-purpose MPC protocols has allowed the
creation of several MPC frameworks that enable a set of parties interested in securely
computing a given function to achieve this task with little-to-none knowledge of secure
multiparty computation. This is achieved by enabling computation over arbitrary com-
puter programs that, in essence, resemble an arithmetic circuit with several available
sub-operations added on top. Popular frameworks of this kind include MP-SPDZ [61],
SCALE-MAMBA [7], EzPC [28], among others, and it is fair to say that these implemen-
tations play a pivotal role into taking secure multiparty computation techniques from
theory to practice.

Finally, we remark that the contents of this thesis are solely concerned with general-
purpose secure multiparty computation. Only in Chapter 7 we discuss some MPC con-
struction for certain specific circuits, but this is because they appear in a wide range of
applications and serve as a building block, rather than them being a particular applica-
tion on their own.

Special-Purpose MPC. A special-purpose secure multiparty computation protocol ex-
ploits particular properties of the given function in order to optimize the construction
to the case at hand. This has major relevance in practice, but quite surprisingly, it also
plays an important role in the theory of MPC.

First, in terms of practice, the benefits of considering special-purpose protocols are gen-
erally obvious: by exploiting the structure of the function to be computed it is typi-
cally the case that multiple savings in efficiency can be achieved with respect to the use
of a more generic protocol for arbitrary computation. We remark, however, that many
special-purpose MPC deployments have as a starting point more generic techniques to
compute basic additions and multiplications, which come from the general-purpose MPC
domain.

On the other hand, special-purpose secure multiparty computation constructions also
have a tremendous impact in theory, by considering certain concrete functionalities. In
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general, the theory of MPC, as far as feasibility or impossibility results is concerned, is
not interested in secure multiparty computation protocols for very specific tasks such as
image analysis or distributed voting. This is because, at the end of the day, one of the
major results in the field of MPC is that secure multiparty computation of any function
is generally possible, so designing special-purpose for these practically-oriented tasks
is not that relevant in this direction.

Instead of considering special-purpose MPC protocols as a way of improving efficiency
of more generic constructions, the main contribution of these type of protocols in terms
of theory lies in simplifying the construction of other, possibly more general-purpose,
protocols. More precisely, different useful functions that turn out to be crucial for the
development of other protocols are identified, and as a result, advances and develop-
ments in regards to MPC constructions for these primitives, specifically, lead to general
improvements across all other constructions that make use of these concrete function-
alities. A good example of a particular function that is not only particularly useful on
its own, but also serves as a major building block in many other secure multiparty com-
putation protocols, is Oblivious Transfer. In short, this is a two-party functionality that
receives two inputs, (m0,m1) and a bit b from two parties P1 and P2 respectively, and re-
turnsmb to P2, effectively allowing this party to learn only the chosen valuemb amongm0

and m1, while P1 does not learn which value was chosen. For a more detailed definition
on this primitive, constructions and applications, we refer the reader to e.g. [64].

1.1.5 Efficiency Metrics

Finally, we discuss some of the efficiency metrics that we are typically interested in when
designing secure multiparty computation protocols.

Computation complexity. A first measure is the amount of computation that each party
has to carry out locally. Fully homomorphic encryption techniques are typically
very costly in terms of computation, although they tend to have minimal overhead
in terms of communication.

Communication complexity. Since MPC is a distributed application, it is important to
measure how many bits need to be transmitted overall by all the parties during
a protocol execution. Protocols based on garbled circuits tend to have a large
communication complexity, although they round count is generally small.

Round count. Finally, orthogonal to communication complexity, which is affected by
bandwidth resources, is the concept of round count, which is more relevant in terms
of the latency between the parties. A communication round consists of one execu-
tion of the parties sending one message to each other. If a protocol involves many
rounds, and there are parties having high-latency links between them, then the
overall efficiency of the given MPC protocol might be poor. Secret-sharing-based
MPC protocols, although they tend to be very reasonable in terms of communica-
tion complexity, suffer from a round count that is proportional to the number of
layers present in the arithmetic circuit at hand.
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1.2 Simulation-Based Security

One of the major achievements of modern cryptography lies in properly formalizing sev-
eral constructions like encryption or digital signatures, so that rigorous mathematical
reasoning could be applied on these. This way, concrete guarantees and relationship
across different notions could be achieved, as exemplified by the idea of “provable se-
curity”.

Secure multiparty computation appeared in the late 80’s as an interesting task to study,
having many potential applications and involving very interesting techniques. However,
it took almost a decade until more formal approaches to secure multiparty computation
appeared, which enabled a more rigorous treatment of the area. The “mathematical
framework” under which the task of secure multiparty computation can be phrased is
highly non-trivial, and is undoubtedly considered a contribution on its own.

1.2.1 High-Level Idea

There exist several different frameworks for formalizing secure multiparty computation
protocols, like the stand-alone model [23], the UC framework [24] and the SUC framework
[25], among others. However, although there are minor differences from one model to
the other, what is common across all these approaches is that security is defined via
simulation, an idea that is already common in the area of zero-knowledge proofs, for
example, and serves the purpose of properly defining the notion of “not learning anything
beyond X”. To provide a high level idea of what this technique is about, recall from
Section 1.1 that the idea of a given secure multiparty computation protocol being secure
is related to ensuring the adversary, who corrupts a subset of the parties, does not learn
anything about the inputs from the honest parties, except perhaps from what is leaked
by the output of the computation itself.

Formalizing the idea of an adversary not learning some data is not new in cryptography,
as it has appears already, for example, in constructions such as encryption schemes,
which are formalized using game-based security.4 The main challenge in the MPC set-
ting, however, is that the adversary does learn something about the data that is intended
to be hidden, namely, the output of the computation. Furthermore, another major com-
plication lies in the fact that secure multiparty computation is a distributed application,
involving communication among the parties according to some specified pattern. The
adversary gets to see all the messages exchanged with the corrupt parties during the
protocol execution, and when the adversary is active, it even gets the power to mod-
ify the behavior of the corrupt parties. These complications put a barrier in the use of
simpler game-based definitions widely used across cryptography.

The key idea to tackle the complication above, as we already hinted at in Section 1.1, is
to consider an ideal world that captures the desired properties of the interaction, and

4In a nutshell, game-based security considers a scenario in which the adversary interacts with the system
trying to distinguish certain data that is intended to be hidden, and security is formalized by requiring
that no adversary can win at this “game” with high probability.
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somehow requiring that the real world, where the actual protocol execution takes place,
is indistinguishable from the ideal world. Typically, the ideal world consists of the parties
sending their inputs to a third trusted party who computes the function and returns
the result, and only the result, to the parties. Now, to claim that the two worlds are
indistinguishable, a natural approach is to claim that the adversary cannot distinguish
the real from the ideal world. However, this approached is doomed as these two worlds
are trivially distinguishable from the point of view of the adversary: in the real world there
are messages going to and from all the parties, there are several rounds, and there is no
trusted parties, while in the ideal world there is a third trusted party that simply receives
inputs and sends output. These two patterns look entirely different, so the adversary can
clearly distinguish between the two.

This is where the idea of simulation kicks in. In the real world, the adversary, corrupt-
ing a subset of the parties, interacts with the honest parties and learns a result at the
end of the execution. In the ideal world, the adversary will not directly interact with the
trusted party. Instead, while the honest parties do interact with the third trusted party,
the adversary interacts with some “virtual” honest parties that, unlike the actual hon-
est parties, do not have access to the inputs intended to be kept hidden towards the
adversary. These virtual honest parties are coordinated by a simulator, who also con-
trols the corrupt parties in the ideal world, sending input and receiving output from the
third trusted party. This way, the simulator effectively serves as an interface that enables
the adversary to interact with the third trusted party in the ideal world, while having an
interaction that equals the one from the real world.

To prove that a given secure multiparty computation protocol is secure, it is then neces-
sary to define a simulator that acts as the interface sketched above, in such a way that
the real world, where the adversary interacts with the actual honest parties holding the
real inputs, is indistinguishable from the ideal world, where the adversary interacts with
the virtual honest parties controlled by the simulator. Notice that the only power the
simulator counts on in order to “fool” the adversary is the access to the third trusted
party, which receives inputs and reveals solely the output. As a result, intuitively, this
means that the adversary’s experience in the real world can alternatively be “recreated”
by having access only to the third trusted party, which, from a philosophical standpoint,
instantiates the core idea of the adversary only learning the output of the computation,
after the interaction with the honest parties in the real world.

With the intuitive approach outlined above, we now proceed to provide slightly more
formal details on how simulation-based security works. We remark that, in this thesis,
we focus only on the UC framework, leaving other simulation-based security notions such
as stand-alone security aside. Furthermore, the description here is not intended to be
fully self-contained, and the approach to the UC framework used in this section is taken
from [34]. For a more complete treatment of the UC framework we refer the reader to
this reference.
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1.2.2 Interactive Agents

We begin by considering all the different entities involved in the formalization of a secure
multiparty computation protocol and their security. Our starting point is the concept of
an interactive agent, which, at an intuitive level, is a computational device that receives
and sends messages, holds internal state and carries out computations. For example,
the parties in a secure multiparty computation protocol are interactive agents, but in
the framework under which these ideas are formalized several other interactive agents
appear. Interactive agents can be formalized by themeans of interactive Turingmachines,
which are simply traditional Turing machines (or algorithms) that, additionally to carrying
out computations, can send and receive data to and from certain communication ports,
which can be thought of as computer buses or channels.

1.2.2.1 Relevant Interactive Agents in the UC Framework

Now we describe the different interactive agents that appear in the UC framework. As we
have mentioned already, the first natural interactive agents are the parties, which are the
actual devices carrying out the computation, but several other interactive agents such
as the simulator or the “trusted third party” appear. We discuss these below.

Parties. The parties, which we denote by P1, ... ,Pn, constitute the first natural example
of interactive agents. Each party Pi , having certain input to the computation, proceeds
according to the instructions of the protocol, performing local computation and send-
ing/receiving data to/from the other parties, as required. At the end of this execution,
each party Pi obtains the result of the computation.

Functionalities (in the real world). A functionality is simply an interactive agent that
connects to the parties. It receives messages from them, performs local computation,
maintains internal state, and sends messages back to the parties.

Although there is only one “type” of functionalities, these are used in two different con-
texts, with the first being in the real world, where the actual execution of the protocol
takes place. In an execution of a secure multiparty computation protocol, the parties
may be able to use certain “external” resources that may aid them during the compu-
tation. As an example, the parties may count on a third trusted party that, although it
may not compute the whole desired function for the parties, may provide certain help
like distributing some secret keys, or sending certain certificates. This can be formalized
as a functionality that the parties talk to during the execution of the protocol at hand.
Furthermore, what is crucial is that, as we will see in Section 1.2.5, if later on another pro-
tocol is developed that imitates the behavior of this functionality, then the parties can
use this construction as a subroutine and the overall construction remains secure, with-
out the need of a third trusted party to assumed to provide the secret-key or certificate
service from the example above.
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Furthermore, so far we have been implicitly assuming that the parties communicate
among each other by means of special ports set between every pair of parties. However,
now that we have introduced the concept of a functionality, it is convenient to consider
communication instead as a functionality which receives messages from and sends mes-
sages to the parties. For example, a simple peer-to-peer network may be modeled as a
functionality that acts as follows: party Pi sends a message of the type “send message m
to party Pj ”, and the functionality sends to Pj the message “party Pi sends the message
m”.5 Although this approach may seem as an unnecessary complication, it actually plays
the important role of enabling flexibility in the way the parties talk to each other.6 For
example, in this thesis we consider as a basis a functionality that, in addition to modeling
point-to-point encrypted and authenticated channels, supports an additional broadcast
channel. More details are provided in Section 1.2.6.1.

Functionalities (in the ideal world). The second setting in which functionalities are
used is in the ideal world. Recall that, in that world, there is a trusted third party that
receives the inputs from the different parties and returns the result of the computation.
This is precisely a functionality, which, as defined above, is an interactive agent that re-
ceives inputs from the parties, performs certain internal computation and sends a result
to the parties.

In the most simple case, a functionality receives the inputs to a given function, evalu-
ates this function internally, and returns the result to the parties. However, the concept
of a functionality allows us to model much more complex interactions. For example, in
Section 1.1.4.2 we discussed non-reactive computation, which enables the parties to ob-
tain partial results and continue the computation afterwards. This can be captured by
a functionality that receives inputs from the parties, stores some internal state, sends
partial results, and continues in this fashion as indicated by the parties. We will discuss
in Section 1.2.6 some basic functionalities we will use throughout this thesis.

Adversary. The adversary, denoted by A, is modeled as another interactive agent, and
it has ports communicating it to the each of the corrupt parties. If the corruption is
passive, these ports are used to inform the adversary about the internal state of the
corrupt parties, including the messages they have received. On the other hand, if the
corruption is active, these ports are used to “fully control” the corrupt parties.

Environment. This entity plays a crucial role within the notion of simulation-based se-
curity. Intuitively, the environment is in charge of distinguishing the real world from the
ideal world. We have mentioned in Section 1.2.1 that it is the adversary who cannot distin-
guish between the real and ideal worlds, but this is unfortunately insufficient. The main
reason for this is that, if we simply require that the adversary cannot distinguish between
5Functionalities of this type are referred to as communication resources in [34], but we avoid this terminol-
ogy in order to make it more clear that these functionalities are no different than the ones considered
in the ideal world.

6Furthermore, an important low level detail of functionalities is that they leak certain information to the
environment, which can be used to model the fact that, in practice, the adversary might be able to see
certain metadata such as when an honest party sent a message to another honest party, its size, etc.

43



Chapter 1 The Theory of Multiparty Computation

the two worlds, then, even though this would imply that the inputs from the honest par-
ties are protected, it might be the case that the honest parties do not receive the correct
output of the computation, which is also an important concern. This could occur since,
to “fool” the adversary, the simulator only needs to create a similarly-looking interaction
towards the adversary, but it could be that the honest parties in the real world end up
computing a completely different result than in the real world, while in the ideal world
they obtain the correct result. Since the adversary does not see these outputs as they
belong to honest parties only, the two worlds would still be indistinguishable.

In order to address this issue, indistinguishability is defined in such a way that the inputs
and the outputs of the computation are also taken into account. This is formalized by
considering another agent, the environment, typically denoted by Z , that indicates the
parties which inputs to use, and receives from each party the result they obtained in
the world under consideration (in the ideal world this corresponds to the correct result
of the computation, while in the real world this is the result the party computes in the
execution of the given protocol). Under this new consideration, a protocol is said to be
secure if no environment can distinguish between the real and ideal worlds. Notice that
this in particular means that the adversary cannot distinguish between the two worlds
as otherwise the adversary could inform the environment which world is currently being
executed, but, even if the two executions are indistinguishable to the adversary, the en-
vironment can still make use of the inputs it provided to the computation together with
the outputs received to attempt to distinguish. If, even after this, the two executions
are still indistinguishable, then it is because not only the distributions look similar to
the adversary but also the outputs in the real world follow the same distribution as in
the ideal world with respect to the inputs provided, which corresponds precisely to the
correct results of the computation.

In the UC model, the environment and the adversary are essentially “one and the same”,
which is modeled by the fact that these two agents have a shared port that enables the
environment to fully control the adversary, in essentially the same way as the adver-
sary can fully control the honest parties in the case of an active corruption. Given that
these two entities, including also the corrupt parties, are so entangled, in this work we
merge the environment, the adversary and the corrupt parties, using the term environ-
ment/adversary indistinctively to refer to the resulting interactive agent. This entity is in
charge of (1) playing the role of the corrupt parties and (2) sending inputs to the honest
parties and receiving output from these.7

Simulator. Finally, as we have already discussed in Section 1.2.1, the simulator is in
charge of acting as an “interface” between the adversary and the desired functionality
in the ideal world. This is formalized by means of an interactive agent that connects
to the adversary/environment in the ideal world through the same ports as the corrupt
parties do in the real world, and also connects to the functionality under consideration,
“on behalf” of the corrupt parties. This way, the simulator can send inputs to and receive

7More generally, the environment, as the name implies, gets to see all the “execution setting”, which, on
top of inputs and outputs, also involves other “metadata” such as information about when a party sends
a message to another, the sizes of these, etc. This is formalized in [34] by means of leakage ports, which
provide the environment with this type of information. The environment is also in charge of “scheduling”
the execution of the protocol. We refer the reader to [34] for details.
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outputs from the functionality, which constitutes the simulator’s main tool to create an
indistinguishable scenario towards the environment with respect to the real world.

1.2.3 Interactive Systems

An interactive system is simply a collection of interactive agents. As an example, a col-
lection of parties is an interactive system, which we refer to as a protocol. We first review
some notions that will be important for our discussions.

Open/closed ports. Recall that a communication port is simply a “channel” that differ-
ent interactive agents have access to in order to send a receive messages. For example,
each party has shared ports with the functionalities used in the protocol execution, which
enables them to send and receive messages to/from it. An interactive system, being a
collection of interactive agents, contains several ports. Many of them will involve at least
two interactive agents, like the ports used between each party and a functionality. How-
ever, in an interactive system some ports may only involve one interactive agent. For
example, the environment is in charge of sending inputs to and receiving output from
the honest parties, plus it can send instructions to and receive information from the
corrupt parties, which means that the parties have ports to communicate with the envi-
ronment. Given this, in an interactive system such as a protocol, which does not contain
the environment, these ports only involve one interactive agent (or, in other word, these
ports are “open-ended”). Other open ports in a protocol are these that the parties use
to communicate with the different functionalities.

Ports involving at least two interactive agents are known as closed ports, while ports
involving only one interactive agent are called open ports.

Open/closed interactive systems. An interactive system with open ports is referred to
as an open interactive system, and an interactive system that only has closed ports is
known as a closed interactive system. For example, a protocol is an open interactive
system, given that it has the open ports corresponding to the interaction between the
environment and the parties, as well as between the parties and the different function-
alities used in the real world.

Open interactive systems cannot in principle be run, as they may miss some data that
should be written into the open ports. For example, a protocol cannot be run, given that
it misses at least one functionality the parties can use for communication, and it also
misses the inputs to be used have to be provided (by the environment) into the open
ports (plus, the environment is also in charge of scheduling the execution itself). On the
other hand, if we consider a larger interactive system consisting of the protocol (which
is the set of parties), the different functionalities to be used, and the environment, now
we obtain a closed interactive system. This system can be run, as the environment can
now provide inputs to the parties, execute the protocol, obtain results (and in fact, it can
do this multiple times).
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Composition of interactive systems. Given two interactive systems I1 and I2, it is pos-
sible to obtain a bigger system from these two by considering the collection of all the
interactive agents involved in these two sets, or, in other words, the union of the col-
lections I1 and I2. This is denoted by I = I1♦I2. For example, we considered above a
closed system given by Z♦Π♦(F1♦ · · ·♦Fℓ), where Π was the protocol under consider-
ation and F1, ... ,Fℓ the various functionalities used in the protocol execution.

1.2.3.1 Relevant Interactive Systems in the UC Framework

We already discussed an important interactive system, a protocol, which is simply a col-
lection of parties. Nowwe consider the twomain interactive systems in the UC framework:
the real and ideal worlds. Recall that, in the real world, is where the actual execution of
the given protocol takes place, while in the ideal world the parties make use of a trusted
third party, modeled as a functionality, to compute the function securely. These ideas
are easily formalized via the notion of an interactive system.

Real world. Intuitively, the real world is where the actual execution of the secure mul-
tiparty computation protocol at hand takes place. We formalize this via the following
interactive system. Let Π = {P1, ... ,Pn} be the protocol and let F1, ... ,Fℓ be the func-
tionalities to be used in the execution of the protocol. The real world is defined as the
interactive system given by Real := Π♦(F1♦ · · ·♦Fℓ). Notice that this is an open system,
as it requires the environment to provide inputs and schedule the protocol execution.

Ideal world. At a high level we have considered the ideal world as where the parties
send their inputs to a third trusted party, and receive outputs afterwards. This had
to be refined to include a simulator S , that acts as the interface between the adver-
sary/environment, and the third trusted party.

LetF be the functionality that models the desired computation to be carried out securely
(i.e. the third trusted party), and let S be a simulator. The ideal world is defined as the
interactive system given by Ideal := S♦F. Once again, this is an open system, and in fact
it has the same open ports as the interactive system Real: the simulator contains open
ports for the environment to connect, as if it were connecting to the corrupt parties in
the real world, and the functionality F has open ports for the environment to provide
input to and receive output from the honest parties. In particular, the interactive systems
Z♦Real and Z♦Ideal are both closed.

1.2.3.2 Parameterized Interactive Systems

Finally, before we dive into the actual security definitions we will consider in this work, we
remark that some interactive agents (and hence, interactive systems) can contain several
external tweakable parameters. For example, a protocol typically allows for computation
over different algebraic structure (e.g. say fields, but of different sizes), or a functionality
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may be parameterizable according to the length of the messages it accepts, to cite some
examples. These are all external parameters, meaning that they have to be set before
considering an execution of these interactive agents. For illustration, they can be thought
to be analogous to compile-time parameters in compiled programming languages.

A very important external parameter is the security parameter. Intuitively, this is a nat-
ural number that, as it grows larger, the protocol becomes “more secure”. This will be-
come clearer in Section 1.2.4 where we consider different notions of security. For now, it
suffices to recall that, among all the different external parameters that the various inter-
active agents under consideration have, one we make explicit mention to is the security
parameter, denoted by κ. To make this explicit we may sometimes write I(κ), where I is
an interactive system/agent that is parameterized by κ.

1.2.4 Security Definition

Having defined the different interactive agents involved in our framework, we now turn
out attention to defining security. As we have already mentioned, this will be achieved
by requiring that no environment can distinguish between the real and ideal executions.
In this section we approach in more detail the task of properly defining “indistinguisha-
bility”.

We begin by introducing some minor preliminaries. First, we present the definition of a
negligible function.

Definition 1.1 (Negligible functions). A function µ : N 7→ [0,∞) is negligible if, for every c ∈
N, there exists κc ∈ N such that, for every κ ≥ κc , it holds that µ(κ) ≤ κ−c . Alternatively,
µ is negligible if, for every polynomial p(X), there exists κp(X) ∈ N such that, for every
κ ≥ κp(X), it holds that µ(κ) ≤ p(κ).

An example of a negligible function is µ(κ) = 2−κ. Intuitively, a negligible function is a
function whose inverse, asymptotically, grows faster than any possible polynomial. These
functions are widely used throughout cryptography to represent very small quantities.

The second consideration we must take care of before approaching our formal defini-
tions, is that we include additional semantic notion to the environment. This interactive
agent is in charge of distinguishing the real from the ideal execution, and it does so by
interacting with either of these worlds, and outputting a bit,8 that is, either 0 or 1, that
represents which world the environment considers it is interacting with. As we will see,
the assignments between these bits and the two worlds is irrelevant. Whenever the en-
vironment Z interacts with an interactive system I , and produces output b, we denoted
this by b ← Z♦I . Notice that this is a random variable, given that the whole computation
carried out by Z is potentially randomized.

Below we consider a setting in which a protocol Π is used to securely compute a func-
tionality F, while making use of the functionalities F1, ... ,Fℓ. We remark that all the
8An interactive agent, being an enhance Turingmachine, can produce output simply by writing it to a special
tape and halting.
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notions below are set with respect to a given adversarial structure, which, as discussed
in Section 1.1, dictates the possible sets that can be corrupted.

1.2.4.1 Perfect Security

First we define the idea of perfect security, which reflects a protocol whose security can-
not be broken even by unboundedly powerful environments/adversaries.

Definition 1.2 (Perfect security.). We say that a protocol Π securely instantiates a func-
tionalityF in the (F1, ... ,Fℓ)-hybrid model with perfect security if there exists a simulator
S such that, for any environment Z and for every κ ∈ N,

Pr[1← (Z♦Real)(κ)] = Pr[1← (Z♦Ideal)(κ)],

where Real = Π♦F1♦ · · ·♦Fℓ and Ideal = S♦F.

Let us analyze the definition above in detail. First, perfectly secure protocols typically do
not rely on the parameter κ, so we can remove it from the definition (it is included for the
sake of maintaining certain “uniformity” in the notation with respect to the other notions
of security described below). Now, the security definition above states that, there must
exist a simulator S such that Z outputs 1 when interacting with the system Real with
exactly the same probability that Z would output 1 when interacting with the system
Ideal. This means precisely that Z cannot distinguish between the two worlds since, if it
could, it could choose for example to output 1 only in the real world, while outputting 0
in the ideal world (so Pr[1← Z♦Real] = 1 and Pr[1← Z♦Ideal] = 0).

Notice that there is nothing special about the output 1. The same definition could have
been considered with the output 0, given that Pr[0 ← Z♦Real] = 1 − Pr[1 ← Z♦Real]
and Pr[0 ← Z♦Ideal] = 1 − Pr[1 ← Z♦Ideal]. This remark also holds for the other
security notions below.

Finally, the quantity |Pr[1 ← (Z♦Real)(κ)] − Pr[1 ← (Z♦Ideal)(κ)]| is typically referred
to as the statistical advantage of Z , and it is essentially a measure of how well Z can
distinguish between the real and ideal worlds. We see that, in the setting of perfect
security, the advantage of any environment is 0.

1.2.4.2 Statistical Security

Now we consider a more flexible definition that allows certain small distinguishing ad-
vantage.

Definition 1.3 (Statistical security.). We say that a protocolΠ securely instantiates a func-
tionality F in the (F1, ... ,Fℓ)-hybrid model with statistical security if there exists a neg-
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ligible function µ(κ) such that, for any environment Z ,9

|Pr[1← (Z♦Real)(κ)]− Pr[1← (Z♦Ideal)(κ)]| ≤ µ(κ),

where Real = Π♦F1♦ · · ·♦Fℓ and Ideal = S♦F.

In this case, Z might be able to distinguish the two worlds “a little”, which is reflected
in the case that Pr[1 ← (Z♦Real)(κ)] and Pr[1 ← (Z♦Ideal)(κ)] may not be equal. In
fact, it could be the case that, for some values of κ, the environment might distinguish
the two worlds very well (for instance it can happen that Pr[1 ← (Z♦Real)(κ)] = 1 and
Pr[1← (Z♦Ideal)(κ)] = 0 for some values of κ). However, the definition requires that, as
κ grows, this distinguishing advantage shrinks at a good rate. For example, if µ(κ) = 2−κ,
then choosing κ = 1 may be too bad since this means that the advantage that the
environment has to distinguish between the two worlds is only 1/2, but if κ = 40, then
this is reduced to 2−40, which is much more acceptable (in fact, 2−40 is a very common
value to aim for when designing statistically secure protocols).

1.2.4.3 Computational Security

Finally, we consider the “weakest” of the security notions regarding secure multiparty
computation protocols. In this case, the environment has a small distinguishing advan-
tage, but this only holds if the environment is computationally bounded, meaning that
it runs in polynomial time. In terms of practical meaning, this notion is good enough
given that in an actual MPC deployment all parties involved will use a bounded amount
of computational resources. Furthermore, as we will see in Section 1.3, some secure mul-
tiparty computation scenarios do not allow for any of the previous notions, and require
computational security instead.

Definition 1.4 (Computational security.). We say that a protocol Π securely instantiates
a functionality F in the (F1, ... ,Fℓ)-hybrid model with computational security if, for any
efficient environment Z ,10 there exists a negligible function µZ(κ) such that

|Pr[1← (Z♦Real)(κ)]− Pr[1← (Z♦Ideal)(κ)]| ≤ µZ(κ),

where Real = Π♦F1♦ · · ·♦Fℓ and Ideal = S♦F.

The first thing to notice with the definition above is that, unlike Definition 1.3, there
is not a single negligible function µ(κ) that bounds the advantage of every possible
environment Z when attempting to distinguish the real and the ideal worlds. This is not
9Here we must slightly limit the environment with respect to these from Definition 1.2, which did not have
any limitation. In this case, we must assume that, although Z might be computationally unbounded, it
only makes a polynomial (in κ) number of “calls” to either Real or Ideal. Otherwise, the notion cannot
be achieved, since by interacting with one of the two worlds a super-polynomial number of times the
distinguishing probability can be arbitrarily improved.

10An efficient environment is one that, at a high level, runs in polynomial time with respect to its parameters.
However, there are several details that must be taken care of when properly defining this idea, given that
the environment, and in general, any interactive agent, exchanges messages with other agents and can
make “calls” to these. We refer the reader to [34] for details.
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possible to achieve in general since there can be a series of environments Z1,Z2, ... with
each Zc running in time κc (which is polynomial), so for a fixed κ0 these environments
have running times κ10,κ20, ..., which is unbounded. Eventually, with enough running time
it would be possible to break the fixed bound on the advantage of µ(κ0).

As a result, the best that can be hoped for is that, for every single environment Z , its
distinguishing advantage can be upper bounded by a negligible function µZ(κ) that de-
pends on this environment. A practical interpretation of this can be the following. After a
careful analysis of the construction at hand, we consider the most efficient known attack
on the protocol, derive an environment Z from this, determine the associated negligible
function µZ(κ) and choose κ so that the advantage of this environment in particular is
below certain threshold (e.g. 2−80). Given our observations above, it could be the case
that this choice of κ is not sufficient to ensure a low distinguishing advantage for other
environments, but at least it rules out the best one that is currently known.

We remark that, in this thesis, even though we consider settings in which only compu-
tational security is achievable, we only deal with perfect and statistical security in our
actual security proofs. This is because, for the settings not admitting this type of secu-
rity, we consider an offline/online paradigm that enables computation with perfect or
statistical security with the help of certain functionalities.

1.2.5 The Composition Theorem

Consider a protocol ΠF that securely instantiates a functionality F with the help of some
other functionality R, that is, in the R-hybrid model. In the real world, this functionality
R acts as some kind of third trusted party that the parties can use to aid them in the
task of securely computing F; however, in practice, this functionality R must somehow
be instantiated. For example, if R represents peer-to-peer encrypted and authenticated
channels then a protocol like TLS must be executed to set these up. Formally, this would
mean that a new protocol ΠR that instantiates R, perhaps in some T -hybrid model, is
used, and a natural question is then the following: what types of formal security guar-
antees can the new protocol achieve? With the “new protocol”, we mean protocol ΠF
but replacing the interaction with the functionality FR by executions of the protocol ΠR,
which instantiates this functionality.

The core result of the UC framework, or universal-composability framework, is that, pre-
cisely, the resulting composed protocol inherits the properties of the two protocols in-
volved, ΠF and ΠR. In particular, this protocol still instantiates F, but instead of doing it
in the R-hybrid model, it does it in the T -hybrid one, which is the functionality needed
by the protocol ΠR. It will typically be the case that T is much simpler than R, which
implies that progress has been achieved towards instantiating F securely.

Before we discuss the theorem in detail, we discuss some of the consequences of the
above high-level description of the result. First, the composition theorem enables a
modular description of highly complex protocols by breaking them into pieces and then
proving the security of each fragment separately, an approach that we make extensive
use of throughout this thesis. For example, in a large and complex protocol Π it might
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be the case that certain piece or pattern is repeated in several places of the protocol
execution. This part can be isolated as a protocol Π′ on its own, instantiating certain
functionality R, and the protocol Π could possibly be expressed in a much simpler way
in terms of this functionality. Now, to prove security, we do not need to provide a proof of
the big “monolithic” protocol Π, but rather, we can prove that its simpler variant, which is
set in the R-hybrid model, instantiates the desired functionality, and then we can focus
only in proving that the protocol Π′ indeed instantiatesR. For illustration purposes, it is
useful to think of the approach above as splitting complex functions in a programming
language into simpler constructions that make calls to other functions. As we will see
in Part II of this thesis, this approach enables clear and modular proofs and protocol
descriptions, and, in the author’s opinion, is one of the key factors that has enabled
such a rich and fruitful body of research in the area of secure multiparty computation.

The composition theorem is not only useful as a pedagogic tool. In practice, secure mul-
tiparty computation protocols are deployed in large and complex distributed systems
that are possibly running, concurrently, many other protocols to achieve other tasks. For
example, keys must be negotiated, random values must be sampled, inputs must be pro-
vided, etc. The composition theorem ensures that, even if several protocols are executed
simultaneously, as long as each of them can be proven secure, then the resulting group
of protocols is also secure. This is a crucial observation that favors the UC framework
with respect to other formal models, such as the stand-alone one, that does not accept
such flexible concurrent composition.

Composing protocols. In order to properly state the composition theorem, it is impor-
tant to clearly and explicit define the different interactive agents and systems involved.

Consider a protocol ΠF = {P1, ... ,Pn} that instantiates a functionality F in theR-hybrid
model, and consider another protocol ΠR which has different parties {Q1, ... ,Qn}11 and
instantiates the functionality R in the T -hybrid model. Composing the protocols ΠF
and ΠR amounts to simply composing them as interactive systems, which is denoted by
ΠF♦ΠR.

To make more sense of this notion, recall that the parties Q1, ... ,Qn have ports to com-
municate with the environment, while the parties P1, ... ,Pn have ports to communicate
with the functionality R. These ports are one and the same: messages sent from Pi

to R are received by Qi as coming from the environment, and similarly in the opposite
direction. This way, the interactive system {Pi ,Qi} acts as one single party, interacting
with the environment (through Pi ’s ports) and also with the functionality T (through Qi ’s
ports). With this new interpretation, we see that the composition of two “compatible”
protocols is again a protocol, where the new parties might be interactive systems that
behave just like an interactive agent. For more details we refer the reader to Section 4.2.7
in [34].

11Recall that, formally, a party carries the “code” of the protocol that is executed, so different protocols
involve different parties.
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Themain theorem. With the notation above at hand, we are ready to properly state the
composition theorem, which is fully proven in [34].

Theorem 1.1 (Composition Theorem, Thm 4.20 in [34]). Let ΠF be a protocol instantiating
a functionality F in the R-hybrid model with perfect/statistical/computational security,
and let ΠR be a protocol instantiating R in the T -hybrid model with the same type of
security. Then, the composed protocol ΠF♦ΠR securely instantiates the functionality F
in the T -hybrid model, with the same type of security.

1.2.6 Some Basic Functionalities

We end this chapter with a description of some functionalities we use throughout this
thesis. This includes the basic communication resource that the parties use to interact
with each other, and the functionality used to model the task of general purpose secure
computation, with a variant to account for security with abort.

1.2.6.1 Underlying Communication Resource

As a starting point, we assume that the parties communicate through the following func-
tionality.

Functionality FP2P+BC

The functionality proceeds as follows:

• On input (message, j ,m) from party Pi , send (message, i ,m) to Pj .

• On input (broadcast,m) from party Pi , send (broadcast, i ,m) to all parties.

The functionality above models a peer-to-peer encrypted and authenticated network in
which the parties can send messages to each other confidentially, and the adversary
cannot modified their contents when the sender is not an actively corrupt party. In
addition to this, in includes a broadcast channel, in which a sender with a given message
can distribute this data to the other parties in such a way that all parties are guaranteed
to receive the exact same value.

All of our protocols assume FP2P+BC as a basis, so we do not write that a given instan-
tiation is “in the FP2P+BC-hybrid model”. Only in Section 1.3, where we present several
fundamental results, we sometimes consider a functionality FP2P that does not include
the broadcast channel.

1.2.6.2 Arithmetic Black Box Model

Recall that, in general-purpose secure multiparty computation, our aim is to securely
compute any possible function, written as an arithmetic circuit over certain algebraic
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structure. In this work, we model such computations in two different ways. First, we con-
sider standard arithmetic circuits as defined in Section 1.1.4.3. These a directed acyclic
graphs with input, operation (addition and multiplication) and output gates, and they
are better suited for modeling non-reactive computation. Naturally, such type of com-
putation can be easily described as a functionality that receives inputs from the parties,
computes the give arithmetic circuit, and returns the output.

In some other places, however, we consider a more flexible functionality that is better
suited for reactive computation, which, as defined in Section 1.1.4.2, enables the parties
to obtain partial results, learn them, and continue the computation possibly depending
on these values. The model we make use of to represent such behavior is the arithmetic
black boxmodel. At a high level, this allows the parties to access a “storage box” that can
keep values sent by the parties, but it also allows for additions and multiplications to be
carried out on stored values, saving the results. Finally, it enables the parties to read any
stored value at any time, which effectively models the setting of reactive computation.
The formal functionality is described below.

Functionality FABB: Arithmetic Black Box

The functionality proceeds as follows.

• On input (input, id, i) from the honest parties, send (input, id, i) to the adversary,
wait for input (value, id, x) from party Pi , where x ∈ Z/2kZ, and then store (id, x) in
memory.

• On input (comb, {ci}ℓi=0, {idi}i∈[ℓ], idℓ+1) from the honest parties, retrieve (idi , xi ) for
i ∈ [ℓ] from memory and store (idℓ+1, z), where z = (c0 +

∑ℓ
i=1 cixi ) mod 2k . Then

send (comb, {ci}ℓi=0, {idi}i∈[ℓ], idℓ+1) to the adversary.

• On input (mult, id1, id2, id3) from the honest parties, retrieve (id1, x) and (id2, y)
from memory and store (id3, z), where z = x · y . Then send (mult, id1, id2, id3) to
the adversary.

• On input (open, id) from the honest parties, retrieve (id, x) from memory and send
x to all the parties. Then send (open, id) to the adversary.

Formalizing security with abort. We have discussed in Section 1.1 three different no-
tions regarding the guarantees the honest parties have with respect to the output of the
computation: guaranteed output delivery, where all parties will receive output, fairness,
where honest parties receive output if the corrupt parties do so as well, and security with
abort, where the adversary may cause the honest parties to abort, perhaps not obtaining
any output, while the adversary may be able to learn the result nevertheless.

In this thesis we focus solely on security with abort (except in Section 3.4 where we dis-
cuss the general idea for obtaining guaranteed output delivery in the t < n/3 setting).
We capture this in the UC framework by endowing all functionalities with the following
behavior: at any point of the execution, the adversary can input a special signal abort
to the given functionality, which sends abort to all honest parties. Upon receiving such
message, each honest party immediately produces abort as output, and halts.

In the real world, whenever we say that “the parties abort”, it means that they produce
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abort as output, and halt. In some cases, the event triggering an abort is only seen by
one party (e.g. some party receives incorrect data). When we say that “party Pi aborts”,
we implicitly assume that this party sends abort through the broadcast channel, so all
parties abort too.12

1.3 Fundamental Results

We now proceed to presenting some of the most fundamental results in the theory of
secure multiparty computation, regarding the feasibility or impossibility of MPC in certain
contexts. Below, we consider different results in the context in which the adversarial
structure is a threshold structure with threshold t , categorized by whether t < n/3, t <
n/2 or t < n. As we will comment in each relevant section, most of the results for
t < n/2 and t < n/3 carry over to the case of Q2 and Q3 general adversarial structures,
respectively.

1.3.1 Results for t < n/3

The context in which the adversary corrupts at most one third of the parties is particularly
relevant as it allows for the strongest level of simulation-based security, namely, perfect
security.

Positive results. We begin with the following crucial result, which shows that the most
desired notions of perfect security and guaranteed output delivery can be achieved if
t < n/3, even if the adversary is active.

Theorem 1.2. There exists a protocol instantiating FABB with perfect security and guar-
anteed output delivery in the FP2P-hybrid model,13 secure against an active adversary
corrupting at most t < n/3 of the parties.

The proof of this result can be found for example in [17,29]. We present a protocol of this
kind in Section 2.4, except it does not achieve guaranteed output delivery.

Remark 1.2. Notice that, in Theorem 1.2, the basic communication resource is FP2P, which
represents encrypted and authenticated peer-to-peer communication, without a broad-
cast channel. Most constructions will still make use of a broadcast channel, but this is
possible to construct from plain peer-to-peer channels with perfect security if t < n/3,
as shown in [75].
12This is the crucial difference between selective abort and unanimous abort. In the former, it can happen
that only some honest parties abort while the others remain in the computation. Through a broadcast
channel, as shown in [56] and as used here, we can ensure unanimous abort by asking aborting parties
to announce their status through the broadcast channel.

13As mentioned in Section 1.2.6.1, our security statements later in the thesis are all set in the FP2P+BC-hybrid
model and we do not write this explicitly.
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Negative results. An interesting fact is that, if the adversary breaks the t < n/3 condi-
tion, that is, if the adversary corrupts more than one third of the parties, then Theorem 1.2
does not hold anymore. More precisely, the “perfect security” part of the theorem cannot
be fulfilled, which is summarized in the following theorem.

Theorem 1.3. No protocol can instantiateFABB in theFP2P-hybrid model against an active
adversary corrupting at least n/3 parties with perfect security.

To show that this theorem holds, it suffices to exhibit a particular function that cannot
be instantiated with perfect security in the FP2P-hybrid model, if an active adversary
corrupts at least n/3 parties. This invalidates the possibility of FABB being instantiable,
given that FABB can be used to trivially instantiate any other functionality. There are
several functions that, if t ≥ n/3, cannot be securely computed in the FP2P-hybrid model.
A typical example being the broadcast functionality. This result can be found in [75].

Finally, although there are some functions such as broadcast that cannot be instantiated
with perfect security in the FP2P-hybrid model if t ≥ n/3, it is natural to ask whether, even
if we add broadcast as a basis, that is, if we work in the FP2P+BC-hybrid model, there are
still some functions that cannot be instantiated with perfect security if t ≥ n/3. This turns
out to be the case, as shown for example in [34] (see Theorem 5.12 in the reference).

Theorem 1.4. No protocol can instantiate FABB in the FP2P+BC-hybrid model against an
active adversary corrupting at least n/3 parties with perfect security.

1.3.2 Results for t < n/2

Now we turn our attention to the setting in which the adversary corrupts at most one
half of the parties. In this setting, although general-purpose secure computation with
perfect security against an active adversary is not possible (as illustrated in Theorem 1.4),
several other properties are still attainable.

1.3.2.1 The Case of a Passive Adversary

Positive results. First we discuss what happens when the adversary is passive. In this
case, it turns out that a protocol with perfect security can be designed, as expressed by
the following theorem.

Theorem 1.5. There exists a protocol instantiating FABB with perfect security in the FP2P-
hybrid model, secure against a passive adversary corrupting at most t < n/2 of the
parties.

Notice that this theorem is similar to Theorem 1.2, except that this time the adversary is
passive and the corruption threshold is at most n/2, instead of being upper bounded by
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n/3. Protocols that illustrate the validity of Theorem 1.5 are presented in [17, 29], and we
include one of such constructions in Section 2.3.

Negative results. A protocol with perfect security to compute arbitrary functionalities
cannot exist if the condition t < n/2 is broken. In fact, such protocol cannot exist even
if we loosen the security notion to statistical security. This is shown in the following
theorem.

Theorem1.6. No protocol can instantiateFABB in theFP2P-hybridmodel against a passive
adversary corrupting at least n/2 parties with statistical security.

A proof of this result can be found, for example, in [72].

1.3.2.2 The Case of an Active Adversary

Positive results. Now we focus on the case in which the adversary corrupts a subset of
the parties actively. As shown in Theorem 1.3, in the case in which t < n/2, given that in
principle it could hold that t ≥ n/3, it is not possible to instantiate FABB with perfect se-
curity in the FP2P-hybrid model (or even in the FP2P+BC-hybrid model from Theorem 1.4).
However, it turns out that, if we relax the security requirement to statistical security rather
than perfect security, an instantiation can be realized. Furthermore, the strongest output
notion of guaranteed output delivery can be attained. This is summarized below.

Theorem 1.7. There exists a protocol instantiating FABB with statistical security and guar-
anteed output delivery in the FP2P+BC-hybrid model, secure against an active adversary
corrupting at most t < n/2 of the parties.

Protocols proving this theorem include [72], or the more recent results of [57] which im-
prove over the communication complexity of the previous ones.

Negative results. Theorem 1.6 shows that, if the bound t < n/2 is violated, then no
protocol can instantiate FABB with statistical security in the FP2P-hybrid model, even if
the adversary is assumed to be passive. In particular, this impossibility extends (“with
even more reason”) if the adversary is active.

On the other hand, another natural question is whether the strong notion of guaranteed
output delivery, achievable if t < n/2, is still attainable if t ≥ n/2. There is a negative
answer to this question, and in fact, not even the weaker notion of fairness can be realized
if t ≥ n/2. This is captured in the following theorem.

Theorem 1.8. No protocol can achieve fairness when instantiating FABB in the FP2P+BC-
hybrid model against an active adversary corrupting at least n/2 parties.
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A proof of this result can be found in [31].

1.3.3 Positive Results for t < n

Finally, we discuss what results are possible in the most general case in which the ad-
versary can, in principle, corrupt all but one party, in contrast to the previous settings, in
which the adversary was assumed to corrupt at most a 1/2 or even a 1/3 proportion of
the parties. In terms of negative results, we can infer from Theorem 1.6 that information-
theoretic security (that is, either perfect or statistical security) is out of the picture in
this case, and from Theorem 1.8 we rule out the possibility of achieving fairness. As a
result, protocols in this setting must make use of computational assumptions (even if the
adversary is passive), or, in other words, they must involve cryptographic constructions
whose security depends on the hardness of certain underlying problem, and they have
to settle for security with abort.

Fortunately, in terms of positive results, it can be shown that protocols with the properties
described above indeed exist. In this case the instantiation can be done over FP2P rather
than FP2P+BC since it is possible to obtain broadcast by making use of computational
assumptions.

Theorem 1.9. There exists a protocol instantiating FABB with computational security in
the FP2P-hybrid model, secure against a passive adversary corrupting possibly all but
one of the parties.

Several protocols of this type have been achieved in the literature, such as [19,41,43,62,63].
In Sections 2.6 and 2.7 we include constructions in this setting with passive and active
security, respectively. These constructions satisfy perfect and statistical security, which
contradicts the impossibility results discussed above. This is because, as we will see in
the relevant sections, these protocols are not set in the FP2P-hybrid model, but instead,
they are built making use of a stronger functionality that distributes certain preprocessed
data among the parties.

1.3.4 Summary of Main Results

The following table summarizes the results we have seen so far in the section. A check
mark (3) represents that a construction in the given setting can be obtained, while an
X mark (7) indicates that it is not possible in general to instantiate FABB in the scenario
under consideration. Additionally, marks in black indicate results that can be trivially
derived from the marks in red, and the numbers in parentheses after the latter type
of marks represent the number of the theorem in previous sections associated to that
result. Finally, this table omits certain details regarding the possibility/impossibility of
broadcast, or more precisely, when FP2P or FP2P+BC is needed, in the t < n/2 row con-
taining the asterisk (⋆), so we refer the reader to the relevant section above for details.
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Privacy guarantees Output guarantees
perf. stat. comp. GOD fair abort

Active
t < n 7 7 3 (1.9) 7 7 (1.8) 3 (1.9)

t < n/2 ⋆ 7 (1.6) 3 (1.7) 3 3 (1.7) 3 3

t < n/3 3 (1.2) 3 3 3 3 3

Passive
t < n 7 7 (1.6) 3 3 3 3

t < n/2 3 (1.5) 3 3 3 3 3

t < n/3 3 3 3 3 3 3
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Chapter 2

Some Essential MPC Constructions

The goal of this chapter is to introduce the reader to several essential techniques used
in secure multiparty computation over fields. This serves two main purposes. First, some
of these techniques have a close resemblance to the ones we present in Part II of this
thesis, where we discuss secure multiparty computation over rings of the form Z/2kZ.
This way, the reader will be able to identify the core techniques that, as a result of the
contributions of this thesis, enable computation over this domain. Second, this chapter
works as a short yet comprehensive resource for readers interested in learning some
of the core techniques in (secret-sharing-based) MPC. Typically, the only sources for this
type of information are the original papers where these techniques are introduced, which
can be overwhelming to read in some cases given their necessary formalism and targeted
audience. Furthermore, in some cases, some techniques are the result of a series of
works rather than a single reference, and this chapter, having appropriate references
to the techniques presented, also serves as a starting point when getting into these
topics.

Given that the focus of this section is simply to provide an overview of major existing
techniques for secure multiparty computation over fields, we omit formal proofs in the
simulation based model from Section 1.2, and content ourselves with including more
intuitive and simple arguments about why the different techniques and protocols satisfy
the different properties they intend to. In Part II, where the actual contributions of this
thesis are presented, formal simulation-based proofs will be presented.

This chapter is organized as follows. First, we discuss in Section 2.1 a general “template”
to design secure multiparty computation protocols, which constitutes the type of con-
structions we focus on in this work. Followed by this, in Section 2.2 we present Shamir
secret-sharing, a popular and very useful secret-sharing scheme that underlies a wide
range of constructions in the literature. Then in Section 2.3 we present a passively se-
cure protocol with perfect security tolerating t < n/2 corruptions, and in Section 2.4 we
extend it to active and still perfect security, but now tolerating t < n/3 corruptions. In
Section 2.5 we improve this to t < n/2 corruptions in detriment of achieving statistical
security only. All of these protocols make use of Shamir secret-sharing as explained in
section 2.2. Finally, in Sections 2.6 and 2.7 we discuss protocols in the dishonest major-
ity setting (that is, t < n) with passive and active security respectively. These protocols
require computational assumptions that heavily increase protocol complexity, meaning
that not only the resulting protocols tend to be more inefficient than the ones using
Shamir secret-sharing, but a full description of these protocols is much more compli-
cated. We avoid this complication by focusing on secure multiparty computation in the
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preprocessingmodel, where we assume certain data among the parties is pre-distributed
by a trusted party. Details are given in the corresponding section.

2.1 Secret-Sharing-Based MPC

Essentially all existing approaches to secure multiparty computation in the literature
begin by representing the function to be computed as an arithmetic circuit, which were
described in Section 1.1.4.3. However, once this circuit can be established, the specific
method used to securely evaluate such circuit tends to vary from work to work. In spite
of this, it is still possible to identify some general patterns, and, although a few works
may not properly fall within any of the categories below, these are inclusive enough to
fit a large portion of the literature in the field of (general-purpose) secure multiparty
computation.

First, some constructions make use of homomorphic encryption techniques to homo-
morphically evaluate the given circuit (or at least certain portions of it), typically without
involving a lot of interaction. These techniques are mostly theoretical (at least these in-
volving large encrypted computations) as the overhead in terms of computational com-
plexity is typically too large. However, as the field of fully homomorphic encryption pro-
gresses, this approach becomes more and more practical and, as a result, it may even-
tually turn into a more practical solution for large and complex computation, at least if
used in a partial and clever way (that is, instead of simply evaluating the entire function
in one go using homomorphic encryption).

A different approach consists of somehow obtaining a “hidden” version of the circuit
that then can be evaluated only on the set of inputs provided by the parties. This turns
out to be the approach initially proposed by Yao [80] when the concept of secure mul-
tiparty computation was itself born, and a rich and extensive body of works has taken
care of enhancing and improving this method, which is known as garbled circuits. This
technique has several benefits in terms of efficiency as it is typically the case that, af-
ter the circuit has been “hidden” (or garbled), which requires interaction in a constant
number of rounds, the evaluation of the circuit itself can happen with little to none com-
munication. This makes this technique ideal for settings in which the parties are widely
distributed and latency is high, so minimizing round trips becomes relevant. Unfortu-
nately, a big downside of the garbled circuits approach is that the process of garbling
the circuit, even though happens in a constant number of rounds, tends to involve a large
amount of data, which ends up in consuming a lot of bandwidth, up to the extent that
for certain applications this becomes a serious bottleneck. Furthermore, the garbled
circuit technique is generally better suited for binary circuits (that is, circuits defined
over F2 = {0, 1}), with a handful of (mostly theoretical) constructions considering more
general arithmetic circuits (e.g. [8, 13]).

The alternative approach to securely evaluate an arithmetic circuit, which constitutes
the focus of this thesis, is based on a tool called secret-sharing. In a secret-sharing
scheme (a concept that we define more precisely in Section 2.1.1 below), a given value
can be distributed among several parties so that each of these participants now holds
a “share”, which satisfy the following: certain sets of shares do not leak anything about
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the underlying value, while some other sets of shares completely determine it. In secret-
sharing-basedMPC the goal is then to obtain a secret-shared representation of the inputs
to the computation, using a secret-sharing scheme that ensures that any possible set in
the adversarial structure (that is, any set of parties that could be corrupted) cannot learn
anything about the underlying secret. This is followed by methods to obtain a secret-
shared representation of all intermediate values in the computation, until the output is
reached.

We discuss the secret-sharing-based MPC approach in more detail in the sections below.
Before we dive into it we remark, however, that there are several works in the literature
that, although they make use of secret-sharing techniques, they do not adhere exactly to
the template provided here. For example, it is very common to mix secret-sharing with
garbled circuits (e.g. [45]), or even with homomorphic encryption techniques.

2.1.1 Linear Secret-Sharing Schemes

We begin our discussion on secret-sharing-based secure multiparty computation proto-
cols, which is the general template to which all of the constructions considered in this
thesis adhere, by first discussing the concept of a secret-sharing scheme itself.

For the purpose of this section we consider a finite field F. Furthermore, we restrict
to threshold secret-sharing schemes, which only protect the secret if less than certain
amount of shares is known, and completely leak the value otherwise. Finally, we also re-
mark that our description here is entirely informal (plus it makes several simplifications)
and does not constitute in any way a formal nor precise treatment of linear secret-sharing
schemes (and, in fact, such treatment is not necessary for the contributions of this thesis
in Part II). For a more concrete mathematical presentation on these tools we refer the
reader to [34].

Let s ∈ F. At an intuitive level, a secret-sharing scheme for n parties with threshold t
provides methods for, on input s , computing a set of values (s1, ... , sn) ∈ Fn such that

1. For any set A ⊆ [n] with |A| ≤ t , the set of shares {si}i∈A does not leak anything
about the value s ;

2. For any set B ⊆ [n] with |B | ≥ t + 1, the value s can be completely reconstructed
from the set of shares {si}i∈B .

When a value s ∈ F is secret-shared as above, it is common to denote this by JsK :=
(s1, ... , sn). In a distributed setting with n parties it is typically assumed implicitly in the
notation above that each party Pi has the share i , for i ∈ [n].

A secret-sharing scheme as above is linear if, in words, each party can locally
add/subtract their shares of different values to obtain shares of the corresponding
operation on the secrets. A bit more precisely, it must hold that, if JxK = (x1, ... , xn)
and JyK = (y1, ... , yn), then Jx ± yK = (x1 ± y1, ... , xn ± yn). Now we discuss some simple
examples of linear secret-sharing schemes
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Example 2.1 (Additive secret-sharing). The following is a construction of a linear secret-
sharing scheme for n parties with threshold n− 1, which means that every set of at least
(n− 1)+ 1 = n shares can reconstruct the secret while any smaller set remains oblivious
to this value. Notice that there is only one possible set of n shares, which is the set of all
the shares.

To secret-share a value s ∈ F, a tuple (s1, ... , sn) ∈ Fn is sampled uniformly at random
constrained to s1+ · · ·+ sn = s . This can be done, for example, by sampling n−1 random
values s1, ... , sn−1 and defining sn = s − (s1 + · · ·+ sn−1). More generally, any set of n− 1
shares can be sampled uniformly at random while the last one is defined as the secret
subtracted with the sum of the other shares. The set of shares is then (s1, ... , sn).

To analyze the required properties by a linear secret-sharing scheme, we observe the
following:

• Any set of at most n − 1 shares follows the uniform distribution, so in particular it
does not reveal anything about the secret s .

• Given all the shares s1, ... , sn, the secret s can be fully determined as s1+ · · ·+sn = s .
This, together with the point above, shows that this construction is a secret-sharing
scheme.

• Given two shared values JxK = (x1, ... , xn) and JyK = (y1, ... , yn), that is, x = x1 +
· · ·+ xn and y = y1 + · · ·+ yn, since x ± y = (x1 ± y1) + · · ·+ (xn ± yn), it holds thatJx ± yK = (x1 ± y1, ... , xn ± yn). This shows that the proposed method constitutes a
linear secret-sharing scheme.

Example 2.2 (Replicated secret-sharing [59]). The following is a construction of a linear
secret-sharing scheme for n parties with a more general threshold t < n. To secret-share
a value s ∈ F, first a set of values {sA}A⊆[n],|A|=t ⊆ F is sampled uniformly at random,
constrained to

∑
A⊆[n],|A|=t sA = s . Each share si for i ∈ [n] is defined to be a vector itself,

which is given by si = (sA)A⊆[n],i /∈A.

Now we analyze the required properties by a linear secret-sharing scheme.

• Given any set B ⊆ [n] with |B | ≤ t , the collection of shares {si}i∈B miss the value
sB′ for any B ⊆ B ′ ⊆ [n]. As a result, these shares together do not have enough
information to reconstruct s , since all of the “additive values” {sA}A⊆[n],|A|=t are
needed to do so.

• Given any set B ⊆ [n] with |B | ≥ t + 1, the collection of shares {si}i∈B contains all
the summands {sA}A⊆[n],|A|=t , which enables the reconstruction of the secret s . To
see this, let A ⊆ [n] with |A| = t . The summand sA is included in all si for i /∈ A, and
since |A| = t < t + 1 ≤ |B |, there is at least one such indexes i in the set B .

• The fact that the construction above constitutes a linear secret-sharing scheme is
straightforward to see.
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2.1.2 MPC based on Linear Secret-Sharing Schemes

Consider a linear secret-sharing scheme J·K. As we know, thanks to the linearity proper-
ties of J·K, it is possible for the parties to obtain Jx + yK given two shared values JxK andJyK. Now, suppose that the parties count on a method to obtain, not only the addition
(and subtraction), but also the product of two shared values. More precisely, suppose
the parties can obtain Jx · yK from two shared values JxK and JyK, possibly by performing
some interaction. With this at hand, the parties can easily compute the given arithmetic
circuit by following this procedure:

1. Each party Pi , having input xi , distributes shares of this value to the other parties,
so the parties obtain JxiK.

2. For each operation gate in the circuit where the inputs x and y are secret-shared
as JxK and JyK, the parties proceed as follows:

• If the gate is an addition gate, then the parties use the linear property of the
secret-sharing scheme to obtain Jx + yK without any interaction.

• If the gate is anmultiplication gate, then the parties use the assumed method
to obtain Jx · yK, potentially with interaction.

• Eventually, the parties get shares of the result of the computation JzK. At this
point, t + 1 of the parties announce their shares to all the others so that the
parties, having at least t + 1 shares, can reconstruct the output z .

From the template above, we see that, to design a secure multiparty computation pro-
tocol, it suffices to consider a linear secret-sharing scheme with the same threshold as
the upper bound on corrupted parties, together with a method to obtain Jx · yK from JxK
and JyK. As we will see throughout this thesis, this general template is highly effective
for building efficient protocols in a wide variety of settings, and, most of the time, the
major complications appear not in the secret-sharing scheme itself, but in the procedure
to multiply secret-shared values.

2.1.2.1 The Case of an Active Adversary

The general template above works well if the adversary is passive, but, when the cor-
ruptions are active, care must be taken in some parts of the protocol. First, naturally,
the assumed method to securely compute multiplications must be actively secure, since
otherwise an active adversary can attack the whole protocol by simply attacking multipli-
cation gates. However, the phase where shares of the inputs are distributed must also be
revisited, since, as we will see in subsequent sections, there are several secret-sharing
schemes where, if the party distributing shares behaves maliciously, sending perhaps
“incorrect” shares, the protocol can be rendered insecure due to “inconsistencies” cre-
ated among the parties.

To prevent actively corrupt parties from secret-sharing their inputs incorrectly, a typical
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approach consists of somehow reducing this to the broadcast channel by using a random
shared value JrK, where the secret t is known by the party providing input. If the input
is x , this party simply needs to use the broadcast channel to announce e = x − r , which
leaks nothing about x since r is uniformly random and only known to the party sending
the message, and then the other parties can locally compute JxK = JrK + e , which leads
to shares of the input x since r + e = x . This method has the advantage that, assuming
that JrK was distributed “correctly”, the resulting shares of x will also be correct.
Finally, another place where the adversary can attack the protocol is in the last step,
where the shares of certain parties are announced in order to reconstruct the result of
the computation. In this case, an actively corrupt party can simply lie about his own
share, and it is not clear what would happen in such scenario. Indeed, this is a problem
we will need to deal with throughout this thesis, and such attack, unless countered, tends
to lead to the parties reconstructing a wrong result.

This type of behavior is addressed by enhancing the secret-sharing scheme with some
method to check that the announced shares are somehow “correct”, and have not been
modified. In some settings, especially the t < n/2 and t < n/3 scenarios, this can be
achieved without modifying the sharing procedure itself, while in some other cases, like
in dishonest majority, some additional information that aids at ensuring integrity must be
added. Details on all these problems and different approaches to solve them in various
settings are given throughout the thesis, although the first relevant sections where such
techniques are encountered are Sections 2.4, 2.5 and 2.7.

2.1.2.2 Offline-Online Paradigm

In several cases, part of the interaction involved during the execution of a given secure
multiparty computation protocols is independent of the inputs from the parties. For
example, when we discussed in the previous section the general idea to obtain secret-
shared inputs correctly, we made use of a secret-shared value JrK where r is known by
the input provider. This type of data has to be produced by certain interaction in the MPC
protocol, but it is independent of any of the inputs to the computation.

It is common in the field to refer to the steps in a given protocol that do not depend on
the inputs to the computation as the preprocessing or offline phase, while the part of
the protocol that requires the parties to know their inputs is typically called the online
phase. The main motivation behind this terminology is that the preprocessing phase,
being independent of the inputs, can be executed at the very start of the protocol ex-
ecution, and after it is over the parties become ready to provide inputs and “actually
compute” the function.

The distinction between an offline and an online phase is not only relevant at the lan-
guage level. Consider two protocols having roughly the same performance overall, except
that one has a very efficient online phase when compared to the other. Even though both
protocols perform similarly, the total latency since the moment the inputs are provided
until the output is obtained is smaller in the protocol with a fast online phase. Imagine
a setting where the parties are idle before running the computation, which is scheduled

64



Chapter 2 Some Essential MPC Constructions

in advance. This time can be then used to execute the offline phase, so that the parties
are ready to run the efficient online phase when the inputs are known.

As we will see in Sections 2.6 and 2.7, and also in some of the constructions from Part II
in this thesis, this offline/online paradigm takes even more relevance in the dishonest
majority, since in this case, as we saw in Section 1.3, protocols must make use of heavy
cryptographic tools to operate. Modern constructions, such as the ones we consider
here, push all the complexities and inefficiencies of these mechanisms to the offline
phase, while leaving a relatively simpler and much more efficient online phase (which,
in addition, typically enjoys information-theoretic security).

2.2 Shamir Secret-Sharing

We begin by presenting the construction and properties of a very popular and widely
used secret-sharing scheme, namely Shamir secret-sharing scheme. This was proposed
by Adi Shamir in [74], and it is one of the most widely known and used examples of a
linear secret-sharing scheme over a field.

Let F be a field of size q, where q is a power of a prime. Assume that q > n, and let
α0,α1, ... ,αn ∈ F be different points in F. We denote by F≤d [X] the F-module of univariate
polynomials over F of degree at most d in the variable X. Let Fu×v denote the set of
matrices with dimensions u × v .

Given β1, ... , βu ∈ F, let Vanu×v (β1, ... , βu) ∈ Fu×v be the matrix given by

Vanu×v (β1, ... , βu) ∈ Fu×v :=


1 β11 β21 · · · βv−1

1

1 β12 β22 · · · βv−1
2

...
...

... . . . ...
1 β1u β2u · · · βv−1

u

 .

When the β’s are clear from context we denote this matrix simply by Vanu×v . This is
called a Vandermonde matrix, and it is well known that if u = v (so the matrix is square)
its determinant is equal to

∏
i<j(βi − βj). In particular, this determinant is non-zero

(and hence the matrix is invertible) if and only if all β’s are different. Let d ≥ 0 and let
β0, ... , βd ∈ F be all different. Since given a polynomial f (X) =

∑d
i=0 ciXi ∈ F≤d [X] it holds

that
(f (β0), ... , f (βd))

⊺ = Van(d+1)×(d+1)(β0, ... , βd) · (c0, ... , cd)⊺,

this shows that every polynomial of degree at most d is determined by its evaluation at
any d + 1 distinct points.

To secret-share a value s ∈ F using Shamir secret-sharing, the dealer samples a polyno-
mial f (X) ∈ F≤t [X] at random, restricted only to f (α0) = s . The share corresponding to
party Pi is then f (αi ). As an example, if α0 = 0, it is easier to see more explicitly how such
sampling could be done: the dealer samples c1, ... , ct ∈R F and sets f (X) = s+

∑t
i=1 ciXi ,

but for a general α0 the process is slightly more complex, as we describe below.
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Shamir Secret-Sharing

The dealer secret-shares a value s ∈ F among n parties P1, ... ,Pn as follows.

1. Sample s1, ... , st ∈R F and define
c0
c1
...
cd

 =

1 α1
0 α2

0 · · · αd
0

...
...

... . . . ...
1 α1

d α2
d · · · αd

d


−1

·


s
s1
...
sd

 .

Let f (X) ∈ F≤d [X] be given by f (X) =
∑t

i=0 ciXi .

2. For each i = 1, ... , n, the dealer distributes the share f (αi ) to party Pi

Reconstruction from any t + 1 shares

Given shares {f (αi )}i∈A for some subset A ⊆ [n] with |A| = t + 1, the secret is
reconstructed as follows.

1. Fix some ordering in A and let us denote (αi )i∈A = (αa1 , ... ,αat+1
). Let

(λAa1 , ... ,λ
A
at+1

) = (1,α0, ... ,α
t
0) · Van(t+1)×(t+1)(αa1 , ... ,αat+1)

−1.

2. The secret is computed as s =
∑t+1

i=1 λ
A
ai · f (αai ).

Definition 2.1. Given A ⊆ {1, ... , n} with |A| = t + 1, we call the values above {λAi }i∈A
Lagrange coefficients. These can be alternatively computed as

λAi =
∏

j∈A, j ̸=i

α0 − αj

αi − αj
.

The reconstruction of a secret distributed with Shamir secret-sharing from any t + 1
shares is done by using these shares, which are evaluations of a polynomial of degree at
most t , to recover such polynomial, followed by its evaluation at α0. This is written much
more explicitly in the description of the protocol above, which in particular shows that
the secret is computed as a linear combination of the shares involved, a fact that will be
used later in one of our described protocols.

Privacy of this secret-sharing scheme, that is, the fact that any set of t shares does not
leak anything about the secret s , is also easy to see, as these are in a 1-1 correspondence
with the randomness used by the dealer. To see this, consider for example the case in
which the given set of shares is {f (αi )}ti=1. In the way that the secret-sharing scheme
is defined, these t values constitute the seed used by the dealer, which are taken com-
pletely at random and independently from the secret s . In the general case it can be
shown that there is a bijective affine transformation between the randomness used by
the dealer and any set of t shares, which shows that these shares are uniformly ran-
dom and independent of the secret. We omit the proof of this result since it follows in
a straightforward manner from the properties introduced so far, and it is only heavy in
notation.
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2.2.1 Secret-Sharing and d-Consistency.

In our protocols, the parties will hold shares of different values, and the various parties
will play the role of the dealer in Shamir secret-sharing to distribute certain secrets. We
begin with the following definition.

Definition 2.2. Let β1, ... , βℓ ∈ F be all different. Given s = (s1, ... , sℓ) ∈ Fℓ, we say that s
is d-consistent if there exists f (X) ∈ F≤d [X] such that si = f (βi ) for i = 1, ... , ℓ. Observe
that if ℓ ≤ d + 1, then every vector s ∈ Fℓ is d-consistent, but if d + 1 < ℓ, then the set of
d-consistent vectors constitutes a strict F-vector subspace of Fℓ.

If the parties hold d-consistent Shamir shares (s1, ... , sn) of a value s , we denote this byJsKd = (s1, ... , sn). This definitionmakes sense in the context of a passive adversary: deal-
ers will always follow the protocol so they will distribute valid shares, and the (passively)
corrupt parties will always use the correct shares they hold when required. However, in
the context of an active adversary, the following can happen:

• An actively corrupt dealer distributes shares (s1, ... , sn) that are not d-consistent.

• Even if a dealer distributes d-consistent shares (s1, ... , sn), an actively corrupt party
Pi can modify its own share from si to any value s ′i at any given point.

Given these issues, it does not make too much sense to say that the parties hold a vector
of shares (s1, ... , sn) (again, since the actively corrupt parties can change their shares).
To address this, we expand the definition of JsKd and d-consistency to the setting of an
active adversary, as follows.

Definition 2.3. Consider the setting of an active adversary. Let H, C ⊆ [n] be the sets
of indexes corresponding to honest and corrupt parties, respectively. We say that the
parties hold d-consistent shares of a secret s ∈ F if there exists a polynomial f (X) of
degree at most d such that:

1. s = f (α0);

2. Each honest party Pi for i ∈ H has si = f (αi ) (i.e. the honest parties’ shares are
d-consistent);

3. The adversary knows sj = f (αj) for j ∈ C.

Furthermore, when this holds, we write JsKd = (s1, ... , sn).1

One aspect that is not very formal from the definition above is what it means for the
adversary to “know” a given value. This is formalized in the context of simulation-based

1We clarify that sometimes the notation JsK instead of JsKd will be used when the degree d is clear from
context.

67



Chapter 2 Some Essential MPC Constructions

proofs by requiring that the simulator is able to “extract” the given value from the ad-
versary, after interacting with it on the emulated protocol execution. Details are left
to the relevant sections that make use of this concept, such as Section 2.5. However,
some intuition on this notion can be provided. Consider for example a setting in which
an honest dealer sends d-consistent shares (s1, ... , sn) of a secret s to the parties, with
si = f (αi ) for some f (X) ∈ F≤d [X], but the corrupt parties Pi change their shares from
si to s ′i . Even though the resulting vector may not be d-consistent anymore, the parties
still have d-consistent shares JsKd : (1) the honest parties’ shares are d-consistent, and
(2) the adversary knows the “real” values si corresponding the corrupt parties Pi .

Remark 2.1. LetH ⊆ [n] be the set of indexes corresponding to honest parties. Let JsKd =
(s1, ... , sn) be a d-consistent sharing, which means that there exists a polynomial f (X) ∈
F≤d [X] such that s = f (α0), si = f (αi ) for i ∈ H, and the adversary knows sj = f (αj) for
j ∈ [n]\H. If |H| = n− t ≥ d +1, then the polynomial f (X) is unique, and in particular, so
is the secret s . However, if n− t ≤ d then, for any secret s ′ ∈ F, there exists a polynomial
fs′(X) ∈ F≤d [X] such that fs′(α0) = s and fs′(αi ) = si for i ∈ H, so if the adversary knows
s ′j = fs′(αj) for j ∈ [n] \ H, the parties would simultaneously “hold” shares Js ′Kd of any
secret s ′, or, in other words, there is not a well-defined secret from the honest shares
alone. This problem will appear in Section 2.5 where n/3 ≤ t < n/2, and d = 2t in certain
points.

Finally, notice that if t ≥ n/2 and d = t , then n − t ≤ d . This is the reason why Shamir
secret-sharing is typically only used if t < n/2: in this setting there are at least t + 1
honest parties, so their honest shares, if t-valid, define a unique secret.

Homomorphisms. Consider two shared values JxKd and JyKd , using polynomials
f (X), g(X) ∈ F≤d [X], respectively (that is, Pi ’s share of x is f (αi ) and the one of y is
g(αi )). If each party adds their shares together, that is, each Pi computes f (αi ) + g(αi ),
they obtain shares of x + y under the polynomial f (X) + g(X) ∈ F≤d [X]. This is denoted
by Jx + yKd ← JxKd + JyKd . On the other hand, if the parties locally multiply their shares,
they obtain shares of x · y under the polynomial f (X) · g(X) ∈ F≤2d [X]. This is denoted byJx · yK2d ← JxKd · JyKd . Note that the degree of the polynomial increases from d to 2d .

Finally, observe that subtraction can be performed locally in a similar way as addition, as
well as multiplying by any constant (that is, a value known by all parties). Furthermore,
the parties can also locally add a constant, that is, obtain Jx + cK from JxK and c , by each
party adding this constant to their share.

2.2.2 Error Detection/Correction

As it has been already mentioned, Shamir secret-sharing is used, in the context of MPC, in
order to distribute the inputs of the computation, as well as the intermediate values and
the output, among the different parties, in such a way that the adversary does not learn
anything about the underlying secrets. In the process of securely computing the given
function, it will be necessary for the parties to reconstruct, or open, some secret-shared
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values. This is the case, for example, for obtaining the output of the computation, which
is in secret-shared form and must be learned by all the parties. Additionally, processing
certain operations like multiplications during the course of the computation requires the
parties to learn certain secret-shared data.

Reconstructing a secret-shared value JsK can be achieved, for example, by asking t + 1
parties to send their shares to all the other parties.2 After a party receives at least t + 1
shares (including possibly its own), this party can reconstruct the polynomial of degree
at most t that interpolate these shares, hence obtaining the secret.

Unfortunately, when the parties are actively corrupt, they can misbehave in the recon-
struction of a secret-shared value by sending incorrect shares. For example, a secret
reconstructed from the shares (s1, ... , st+1) would be computed as s =

∑t+1
i=1 λ

[t+1]
i · si ,

but if party P1 announces a different share s1 + δ1, then the reconstructed secret would
be s + δ, with δ = λ

[t+1]
1 δ1. Furthermore, the parties do not have a way of detecting that

a change has been introduced, given that (s1 + δ1, s2, ... , st+1) look like legitimate shares
of s + δ.

The reason why the parties cannot detect that an error has been introduced is because
any set of t + 1 values (s ′1, ... , s ′t+1) is consistent with a polynomial of degree at most t .
However, if the parties use, say, t +2 shares (s1, ... , st+1, st+2) to first check the existence
of a polynomial f (X) such that f (αi ) = si for i = 1, ... , t+2, then it is “less likely” that the
error δ1 that P1 introduced preserves the existence of this polynomial. This is because a
vector of t+2 shares is not necessarily consistent with a polynomial of degree at most t ,
and in fact, we can show that if δ1 6= 0 then there is no way in which (s1+δ1, ... , st+1, st+2)
is consistent with a polynomial of degree at most t .

Unfortunately, the method above of checking consistency using t+2 shares is insufficient
to prevent an attack that modifies the reconstructed secret, given that the adversary
has the power to modify not only P1’s share, but the shares of at most t parties. The
following example shows that, if the parties only check that 2t shares are consistent with
a polynomial of degree at most t , then the adversary, who controls t parties actively, can
cause the reconstructed secret to be incorrect, without being detected. This is related
to Remark 2.1, where it is mentioned that if n′ − t ≤ d , where n′ is the total number of
shares (so 2t for the purpose of this example, where also d = t), then the secret is not
well-defined by the honest shares alone, and the corrupt parties can modify theirs to
result in t-valid sharings of any secret.

Example 2.3. Let JsKt = (s1, ... , sn), where the underlying polynomial is f (X), that is,
f (α0) = s and f (αi ) = si for i ∈ [n]. Let A ⊆ [n] be the set of the t indexes corresponding
to corrupt parties, and let B ⊇ A such that |B| ≤ 2t . Suppose that at reconstruction time
the parties check that the announced shares corresponding to indexes in B are consis-
tent with a polynomial h(X) of degree at most t , and output h(0) if this is the case. Then
the adversary can cause the parties to reconstruct a wrong secret as follows.

1. The adversary samples a polynomial g(X) of degree at most t such that g(αi ) = 0

2This incurs in a total communication complexity of ≈ t · n. This can be improved to O(n), as described in
Section 2.2.4.
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for i ∈ B \ A and g(α0) = δ for some δ 6= 0 of the adversary’s choice. Observe this
is possible since |(B \ A) ∪ {α0}| ≤ t + 1.

2. The corrupt parties Pi for i ∈ A modify their share si as s ′i = si + δi , with δi = g(αi ).

At reconstruction time the parties check if there is a polynomial h(X) of degree at most
t such that h(αi ) = si for i ∈ B \ A, and g(αi ) = s ′i for i ∈ A, and if this is the case,
they output h(0) as the reconstructed secret. Such polynomial indeed exists, namely
h(X) = f (X) + g(X). Indeed, if i ∈ B \ A, then h(αi ) = f (αi ) + g(αi ) = si + 0, and if i ∈ A
then h(αi ) = f (αi ) + g(αi ) = si + δi = s ′i . However, the reconstructed secret is equal to
h(α0) = f (α0) + g(α0) = s + δ.

In what follows we will see that the parties can check that the announced shares are
correct if they use at least 2t + 1 shares. In fact, we will see that they can identify the
incorrect shares, remove them, and therefore reconstruct the right secret, if they use at
least 3t + 1 shares. These results will be presented in a more general way, using termi-
nology that resembles that in the field of error correcting codes, and later in Section 2.2.3
we will interpret what these results imply in our setting.

The results in this section are more general, since they are phrased in the context of
error-correcting codes. Let ℓ and d be non-negative integers, and let β1, ... , βℓ ∈ F be
all different. Let s = (s1, ... , sℓ) ∈ Fℓ be a d-consistent vector, which, recalling from
Definition 2.2, means that there exists f (X) ∈ F≤d [X] such that si = f (βi ) for i = 1, ... , ℓ.
Suppose that this vector is modified as s + δ, for some error vector δ ∈ Fℓ. In the
context of error-correction, the goal is to recover the polynomial f such that f (βi ) = si
for i = 1, ... , ℓ from the corrupted vector s+ δ. In error-detection we are only interested
in determining whether δ is non-zero.

2.2.2.1 Error Detection

First, notice that being d-consistent is an F-linear property, so δ is d-consistent if and
only if s + δ is d-consistent as well. If these conditions hold, then any hope of error-
correction or detection is lost given that s + δ will look as “legitimate” as s. Given the
above, we begin by looking at some conditions under which δ can be d-consistent. Let
e be an upper bound on the number of non-zero entries of δ. Observe that if e < ℓ− d ,
then δ cannot be d-consistent, unless it is the zero vector. This is because, if δ was
d-consistent, its ℓ − e > d zero entries would be enough to determine the underlying
polynomial, which has to be the zero polynomial. On the other hand, if e ≥ ℓ− d , then it
is easy to check that δ could be d-consistent.3

We see then that, if e < ℓ− d , the only way in which s+ δ can be d-consistent is if δ = 0,
so if no error was introduced. As a result, we can detect whether δ is zero by checking if
s+ δ is d-consistent.

3In fact, this is the reason why the attack in Example 2.3 works. There we have ℓ ≤ 2t , d = t and e = t , so
e ≥ ℓ− d . This is also the reason why, if n− t ≤ d , a degree-d secret-shared value is not well defined if
the adversary is active, as pointed out in Remark 2.1.
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A more intuitive view. Another way to see the result displayed above is the following.
Suppose that e < ℓ− d , and that s+ δ happens to be d-consistent. Then, the underlying
polynomial could be recovered from any set of d + 1 entries, and in particular, it could
be recovered from the ℓ− e ≥ d+1 entries that were not affected by δ, which shows that
the underlying polynomial of s+ δ has to be the same as that of s.

2.2.2.2 Error Correction

Unfortunately, even if e < ℓ− d , knowing that s+ δ is not enough to find the polynomial
f (X) underlying s. For example, if e = ℓ−d−1, a pair of non-zero error vectors δ1, δ2 ∈ Fℓ

having at most e non-zero entries can be found such that s2 = δ1 − δ2 is d-consistent,
but this is a problem since the modified vectors s1 + δ1 and s2 + δ2, where s1 = 0 (which
is d-consistent), are the same, so given only this vector it is not possible to know if it is
a modified version of s1 or of s2.

If the bound e is zero, then obviously we can always find f from s+ δ, so there must be
a point in which the amount of errors in δ is so small, that error-correction is possible.
This point is reached when e < (ℓ−d)/2, and moreover, this is optimal in the sense that,
for (ℓ−d)/2 ≤ e < ℓ−d , we can always build examples as the one suggested above that
show that finding the original polynomial for s is not possible.

We claim that if e < (ℓ− d)/2, if s1, s2 ∈ Fℓ are two different d-consistent vectors, and if
δ1, δ2 ∈ Fℓ are error vectors with at most e non-zero entries each, then s1 + δ1 = s2 + δ2
cannot hold. This would enable error correction of s+ δ by looking through all possible
error vectors with at most e non-zero entries, subtracting it from s+δ, and checking if the
result is d-consistent vector. To show the claim above simply notice that s1+δ1 = s2+δ2
implies that δ2 − δ1 = s1 − s2 would be a d-consistent vector, but this cannot happen
since δ2 − δ1 has at most 2e < ℓ − d non-zero entries, but we just showed above that a
vector with strictly less than ℓ − d non-zero entries cannot be d-consistent unless it is
the zero vector, which would imply that s1 = s2.

Efficient error-correction. Above, we said that to error correct s+ δ, one would have to
go over all possible vectors δ could be equal to, which is of course very inefficient. This
could be optimized slightly by looping over all possible subsets of e coordinates, and
checking if the remaining coordinates of s+ δ form a d-consistent vector (of dimension
ℓ−e). Because (ℓ−e)−d > e , the results from before show that this can only happen if this
“sub”-vector does not have any errors in it, which means that the guessed coordinates
contain all the possible errors. This, unfortunately, is still too inefficient.

Instead, in practice we would recur to error-correction algorithms, also known as de-
coders, which achieve the task of identifying the error locations very efficiently. For the
case at hand, we could use for example the Berlekamp-Welch algorithm [79], which is
an efficient algorithm to solve the decoding problem. A generalization of this method to
other algebraic structured beyond fields is presented in Section 3.1.4.
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Amore intuitive view. The process of error-correction can be also thought of as follows.
Suppose that after looping through all subsets of coordinates of s + δ of size ℓ − e , we
find one that is d-consistent. Then, any set of d +1 coordinates among these determine
all the others. Furthermore, we know that the chosen sub-vector has at most e errors,
so it has at least (ℓ − e) − e = ℓ − 2e ≥ d + 1 non-modified entries, which determine
the polynomial completely. Since these entries are the same as in s, we see that the
polynomial underlying the chosen sub-vector is the same as the one for the original
vector s.

2.2.3 Error Correction/Detection in the Context of MPC

As motivated at the beginning of Section 2.2.2, the purpose of the theory of error de-
tection/correction in the context of MPC is to allow parties to reconstruct secret-shared
values correctly, in spite of the actively corrupt parties announcing incorrect shares. More
precisely, the parties have a secret-shared value JsKd = s = (s1, ... , sn), and in order to
learn s , each party Pi announces its share si to the other parties. Actively corrupt parties
may announce an incorrect si + δi for some error δi , which means the secret must be
reconstructed from the shares s + δ, where δ ∈ Fn has as its i-th entry 0 if i is an index
corresponding to an honest party, and δi otherwise. Since there are t corrupt parties,
there are at most t non-zero entries in δ. This puts us in the context of error correc-
tion/detection studied before with ℓ = n and e = t .

The results from the previous sections can be summarized as follows:

No error detection. If e ≥ ℓ − d , then the adversary can choose δ so that s + δ is d-
consistent, and the reconstructed secret will be s + δ for some δ of the adversary’s
choice.

Error detection. If e < ℓ− d , then s+ δ is d-consistent if and only if δ = 0.

Error correction. If 2e < ℓ − d , then there exist efficient algorithms to recover s from
s+ δ.

As we will see in subsequent sections, the values of d that we will need to make use
of in our protocols are d = t and d = 2t . Furthermore, the two main settings in which
we will make use of these techniques are the honest majority setting, in which t < n/2
(see Section 2.5), and two-thirds honest majority where t < n/3 (see Section 2.4). The
following table summarizes, for the cases of t < n/2 and t < n/3, and for the different
degrees d = t and d = 2t , when error detection/correction is possible. These results
will be used later on in Sections 2.4 and 2.5 when we construct actively secure protocols
with t < n/3 and t < n/2 respectively.
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error corr. error det.

t < n/2
degree t 3 3

degree 2t 7 3

t < n/3
degree t 7 3

degree 2t 7 7

2.2.4 Reconstructing Secret-Shared Values Efficiently

The previous section addressed the question of ensuring the adversary does not fool the
parties into reconstructing a secret-shared value JsKd incorrectly as s+δ. However, doing
this naively would require each party to send its share to all other parties, which incurs
in a total communication complexity of at least n · t field elements being transmitted.
To alleviate this issue, an alternative is to let the parties send their shares to a single
“intermediate” receiver, who reconstruct the secret and then informs all the parties of this
result. This is in fact the approach taken in the protocol from Section 2.3.2.1 to reconstructJaK2t : the parties send their shares to P1, who sends the result back to all the other
parties.

Unfortunately, the issue that arises with this approach is that an actively corrupt interme-
diate receiver may choose to lie about the reconstructed value, which would ultimately
lead to the parties learning an incorrect secret. Designing a solution to this problem
while still achieving linear communication complexity is far from trivial, and the one we
will present below was introduced in [42].

Suppose that the parties are not reconstructing one value JsKd , but many of theseJs0Kd , Js1Kd , ... , JsdKd . Consider the polynomial f (X) =
∑d

j=0 sjXj . The parties can com-
pute Jf (αi )Kd =

∑t
j=0 JsjKd αi

j for i ∈ [n] (observe that each f (αi ) can seen as a degree-d
share of f (α0)). Then, the parties can reconstruct each of these shares towards the corre-
sponding parties, which leads the parties to obtain shares Jf (α0)Kd = (f (α1), ... , f (αn)).
At this point they can reconstruct this new secret using the naive approach from above:
each party Pi sends its share f (αi ) to all other parties. This enables each party to er-
ror correct/detect in order to recover the secret f (α0), but, what is more important, is
that each party will not only recover the secret, but the polynomial f (X) itself, whose
coefficients are s0, s1, ... , sd .

Regarding communication complexity, the solution above involvesΘ(d ·n) field elements.
However, since d + 1 secret-shared values are reconstructed, the amortized complexity
per secret is Θ(n), as required. The protocol is summarized below.

ΠPublicRec: Efficient Public Reconstruction

Input: Secret-shared values Js0Kd , ... , JsdKd
Output: All the parties learn s0, ... , sd .
Protocol: The parties proceed as follows

1. Let f (X) =
∑d

j=0 sjXj . The parties locally compute Jf (αi )Kd =
∑d

j=0 JsjKd αj
i for i ∈ [n].
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2. Each party Pk for k ∈ [n] sends its share of Jf (αi )K to Pi , for i ∈ [n].

3. Upon receiving the shares of Jf (αi )K, each Pi for i ∈ [n] does the following:
• If n > d + 2t , then perform error correction to recover f (αi ).
• If n > d + t , then perform error detection to either recover f (αi ), or fail at
reconstruction. If the latter happens then the party aborts.

4. If no abort was produced in the previous step, each Pi for i ∈ [n] sends the recon-
structed f (αi ) to each other party Pj .

5. Upon receiving the shares, each party Pj proceeds as follows:
• If n > d + 2t , then perform error correction to recover the polynomial f (X),
and output its coefficients s0, ... , st .

• If n > d + t , then perform error detection to either recover the polynomial
f (X), outputting its coefficients, or fail at reconstruction. If the latter happens
then abort.

To see why the protocol works as intended we proceed as follows. First, by the results
from Section 2.2.3, each party Pi for k ∈ [n], upon receiving the shares of Jf (αi )Kd from
the other parties, is able to perform error correction if n > d + 2t to recover f (αi ), or
alternatively it can perform error detection if n > d + t .

Now notice the polynomial f (X) has degree at most d , and at this point if no abort has
happened the parties hold the evaluation points (f (α1), ... , f (αn)). Again by the results
from Section 2.2.3 we have that, when these shares are announced, the parties can per-
form error correction if n > d +2t to recover not only the “secret” f (α0), but the polyno-
mial f (X) =

∑d
j=0 sjXj , and if n > d + t , error detection can be performed. As a result, if

no party aborts, the parties finish the protocol reconstructing the correct original secret-
shared values.

Remark 2.2. The protocol ΠPublicRec requires the parties to reconstruct several secret-
shared values Js0Kd , ... , JsdKd in order to benefit from the improved efficiency. However, it
can be the case during certain steps of a protocol execution only a few secret-shared val-
ues must be reconstructed. For example, this is the case if the function being computed
only has one output, which is obtained in secret-shared form and must be reconstructed.
In this case, instead of using the protocol ΠPublicRec, the parties can simply use the more
naive approach of sending the shares to each other in one single round, with each party
error correcting on its own to get the output. This involves quadratic communication
complexity, but this is acceptable since this is only called once at the end of the protocol
execution.

2.3 Passive and Perfect Security for Honest Majority

With the tools that have been described so far we are now ready to describe a perfectly
secure protocol that can withstand a passive adversary corrupting t parties where t <
n/2. Recall from Section 1.3.2 that the combination of passive and perfect security with
honest majority cannot be enhanced in any way, in the sense that improving any of
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the three properties degrades the others. For example, shifting from passive to active
security requires us to either switch from perfect to statistical simulation, or from honest
majority to two-thirds honest majority. Also, for instance, if the threshold t < n/2 does
not hold, that is t ≥ n/2, then even if we settle with passive security, the simulation
would have to be computational.

Notice that, since in this first protocol the adversary is assumed to be passive, the the-
ory on error correction/detection developed in Section 2.2.2 does not play a role here
given that the corrupt parties do not modify their shares when reconstructing a secret-
shared value. This theory will be used in Sections 2.4 and 2.5 when we consider active
adversaries.

2.3.1 A First Protocol

Let us begin with a protocol that is conceptually very simple, which is taken from [17,54].

Recall from Section 2.2 that, for any subset of indexes A ⊆ [n] of size d + 1, there exists
coefficients λA1 , ... ,λAd+1 such that, whenever the parties have a shared secret JsKd =

(s1, ... , sn), this value can be computed as s =
∑

i∈A λ
A
i · si . This will be used in the

protocol below.

Passively secure protocol with perfect security

Setting: Each party Pi has input xi ∈ F.

Input phase: Each party Pi acts as the dealer in Shamir secret-sharing to distribute
shares of its input xi using polynomials of degree t . The parties obtain JxiKt .
Addition gates: For each addition gate with secret-shared inputs JxKt and JyKt , the
parties locally compute Jx + yKt ← JxKt + JyKt .
Multiplication gates: For each multiplication gate with secret-shared inputs JxKt
and JyKt , the parties proceed as follows:

1. The parties compute locally Jx · yK2t ← JxKt · JyKt .
2. Let us write Jx · yK2t = (z1, ... , zn). Let λ1, ... ,λ2t+1 ∈ F be the (publicly known)
coefficients such that x · y =

∑2t+1
i=1 λi · zi . Each party Pi for i = 1, ... , 2t + 1 acts as

the dealer in Shamir secret-sharing to distribute shares JziKt .
3. The parties compute locally Jx · yKt =∑2t+1

i=1 λi · JziKt
Output phase: Let JzKt be the output of the computation.

1. Each Pi for i = 1, ... , t + 1 sends its own share of z to all the other parties.

2. After each party Pi receives t + 1 shares (possibly counting its own), it reconstruct
the output z .

Correctness and privacy of the protocol should be clear given that the adversary is pas-
sive: after the input phase the parties have shares of each input to the protocol, which
does not leak information to the adversary due to the privacy properties of Shamir secret-
sharing scheme since the adversary knows only t shares coming from the corrupt parties,
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which are not enough to determine a J·Kt-shared secret. After the input phase, all par-
ties proceed in a “gate-by-gate” fashion, computing shares of each intermediate value,
or wire, in the computation. Addition gates are clearly correct since these make use of
the homomorphic properties of Shamir secret-sharing. For multiplication gates, correct-
ness follows from inspection, and privacy follows again from the fact that each party Pi

is distributing information only in secret-shared form, which does not leak information
towards the adversary.

Intuition for the security proof

As explained at the beginning of the chapter, we will not include formal security proofs
for now, as these are delayed until Part II of this work, where the actual contributions
are presented. However, it is still a fruitful exercise to provide some intuition as to how
such proof would work in the protocol we have at hand here.

In order to obtain a proof of the security of the protocol described above, we would have
to define a simulator S that interacts with the adversary corrupting t parties, in such a
way that the adversary does not know if he is interacting in a real-world execution of
the protocol, where the actual honest parties are running the protocol at hand, or in
a ideal-world execution, where the honest parties only provide their inputs to an ideal
functionality that is in charge of computing the function on the given inputs and returning
only the output.

For simplicity in the notation, let us assume that the corrupt parties are P1, ... ,Pt . The
simulator S can interact with the t corrupt parties, and also with the functionality that
computes the given function ideally by providing inputs to it on behalf of the corrupt
parties. S needs to “fool” the adversary into believing that he is interacting with real
honest parties, so to do this S emulates a set of honest parties Pt+1, ... ,Pn that will
interact with the corrupt parties in what should look like a genuine execution of the
protocol. Notice that the trick here is that the simulator does not know what the actual
inputs from the honest parties are!

Let us begin by analyzing how the input phase could be simulated. In the protocol de-
scription, all parties need to secret-share their input. S does not know the inputs from
the honest parties, so it cannot distribute towards the corrupt parties shares of these
inputs. However, this does not matter: the adversary corrupts only t parties, and recall
from the properties of Shamir secret-sharing that any set of t shares looks completely
random. Hence, the emulated honest parties can simply send random values to the t
corrupt parties as the shares of their inputs, without actually knowing what their inputs
are. Therefore, so far, the adversary cannot tell whether he is interacting with the actual
honest parties in the real world, or with the simulator in the ideal world.

On the other hand, as part of the input phase, the emulated honest parties Pt+1, ... ,Pn

will receive shares of the inputs x1, ... , xt from the corrupt parties P1, ... ,Pt , and since
there are at least t + 1 parties among the parties emulated by S (given that t < n/2),
this enables him to reconstruct these inputs x1, ... , xt . Furthermore, this also enables S
to reconstruct not only the inputs x1, ... , xt , but also the shares that the corrupt parties
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have of these inputs (since any t +1 shares not only determine the secret, but the poly-
nomial that was used to distribute it, so in particular they also determine all of the other
shares).

At this point the corrupt parties have “shares” of all the inputs, with the quotes serving
the purpose of emphasizing that the shares corresponding to the inputs of honest parties
are just random values. On the other hand, the emulated honest parties do not really
have any share. In a sense, the only parties that hold shares are the corrupt ones, but
there are only t of them so these shares do not actually determine any secret, which
enables the computation to “take place”, even though in the ideal world only the inputs
and the outputs exist. This will be made clearer in subsequent paragraphs.

Observe that S knows all the shares that the corrupt parties have, which is crucial as
we will show towards the end. The next steps of the computation involve proceeding
gate-by-gate, obtaining shares of their outputs from shares of the inputs. Addition gates
are handled in a simple way as they require no interaction: the corrupt parties simply
add their shares together (notice in particular that the simulator still knows the shares
held by the corrupt parties if it knew the ones for the input summands).

Multiplication gates require a bit more care. Suppose that the shares held by the corrupt
parties P1, ... ,Pt corresponding to the inputs of the multiplication are (x1, ... , xt) and
(y1, ... , yt), which are known to S . According to the description of the protocol, each cor-
rupt party Pi will send to the other parties degree-t shares of xi ·yi . The simulator receives
through the emulated honest parties at least t + 1 shares of each xi · yi , which enables
him to determine the shares that the other corrupt parties received. Also, the protocol
requires parties Pt+1, ... ,P2t+1 to similarly secret-share the product of their shares of
the inputs, but this is not possible since, again, the simulator does not know this infor-
mation. This is again not a problem since these parties can simply send random shares
to the t corrupt parties without actually knowing what value is being secret-shared. The
adversary cannot distinguish this from what happens in the real execution.

Finally, the protocol reaches the output phase. The corrupt parties have shares of this
output, and the simulator knows what these shares are. Recall that S learned the inputs
x1, ... , xt from the corrupt parties in the input phase. The simulator can interact with the
functionality to obtain the output z of the computation, using the real inputs from the
actual honest parties. This is the exact same output that would have been computed if
the adversary was involved instead in a real-world execution, where the actual honest
parties participate in the protocol. So far the adversary cannot tell the difference.

Since S knows the output z , and he also knows the t shares of this value that the corrupt
parties have, these t + 1 points enables S to compute what the share corresponding to
Pt+1 should be so that it look consistent with the corrupt parties’ shares and the given
output z . Once this is done, Pt+1 can easily play the output phase of the protocol by
sending to the corrupt parties the computed share. The adversary ends up reconstructing
z , since this is how the share of Pt+1 was computed, and this is exactly what would have
happened in a real execution.
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2.3.2 A More Efficient Protocol

The protocol described above is conceptually very simple. However, its main disadvan-
tage is the amount of data the parties have to communicate measured in terms of n, the
number of parties. Let M denote the number of multiplication gates in the circuit. For
each of these gates, the protocol requires the parties P1, ... ,P2t+1 to secret-share a value
towards the other parties, which in turn requires each of these parties to send a share
to each other party. This amounts to n − 1 field elements sent by each of the parties in
{P1, ... ,P2t+1}, which gives a total ofΘ(t ·n) field elements transmitted over the network,
per multiplication gate. Alternatively, this can be written as Θ(t · n · M) for the whole
computation.4

As a practical observation, it is natural to increase t as n increases, given that this value
determines the amount of parties that the adversary needs to corrupt in order to break
the privacy of the protocol, and it can be argued that the more parties that participate
in the protocol, the “easier” it becomes for the adversary to corrupt a large portion of
these. Furthermore, it is typical to consider the maximal case for which t < n/2, namely
t = b(n−1)/2c, an in this case the total communication complexity of the protocol above
becomes Θ(n2M), which is also referred to as quadratic communication complexity. It
would be much more ideal if we had a protocol with linear communication complexity,
that is, Θ(nM). A protocol with such communication complexity has the property that,
in average, the communication required by each party, which is 1

nΘ(nM) = Θ(M), is not
affected by how many parties participate in the protocol. This can be phrased as follows:
even if more parties join the computation, the amount of data each party has to send
remains, in average, constant.

The goal of this section is to present a perfectly secure MPC protocol in the honest ma-
jority setting against a passive adversary that achieves linear communication complexity.
The protocol is taken from [42], and it follows a similar template to the one described
in Section 2.3.1: each party first secret-shares its input, and then the parties proceed
in a gate-by-gate fashion, obtaining shares of the output of each gate, until they reach
the final output of the computation, whose shares are exchanged so that the parties
can reconstruct the result in the clear. The main difference lies in the way multiplica-
tion gates are handled, which is the main source of inefficiency in the previous protocol.
The multiplication protocol from the previous section can be seen as having the follow-
ing structure: The parties locally multiply the shares of the inputs, obtaining degree-2t
shares of the product of the underlying secrets, and then they perform an action that
converts these shares from degree-2t to degree-t . In the previous protocol this conver-
sion was achieved via resharing: each party secret-shares its own degree-2t share using
degree-t sharings, and since reconstruction is linear, these shares can be combined in
an appropriate manner to obtain degree-t sharings of the original secret. Instead of us-
ing resharing, the protocol we will discuss next uses the so-called double-sharings to
reduce the 2t → t conversion to the task of simply reconstructing certain shared value,
which is much more efficient to achieve as we will see.

4This ignores the communication involved in other steps of the protocol such as the input and output
phases. This is, however, reasonable, as in typical applications the “inner” complexity of the function
(measured by the amount of multiplications in our case) is much bigger than the amount of inputs and
outputs.
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2.3.2.1 Using Double-Sharings for Secure Multiplication

Our protocol relies heavily on the concept of double-sharings, which constitute a spe-
cial type of preprocessing material that enables the parties to handle multiplications
securely. A double-sharing is a pair of the form (JrKt , JrK2t), where r ∈ F is uniformly
random and unknown to the adversary.5 These double-sharings constitute preprocess-
ing material, since they do not depend in any way on the inputs to the multiplication
protocol, or in general, the inputs to the function under consideration.

Secure multiplication protocol via double-sharings

Preprocessing: A double-sharing (JrKt , JrK2t).
Input: JxKt and JyKt two secret-shared values.
Output: JzKt , where z = x · y
Protocol: The parties execute the following

1. The parties compute locally Jx · yK2t ← JxKt · JyKt and JaK2t ← Jx · yK2t − JrK2t
2. The parties P2, ... ,P2t+1 send their shares of JaK2t to P1 who, together with his own
share, reconstructs a.

3. P1 sends a to all the other parties, so this value becomes publicly known.

4. The parties compute locally and output JzKt ← JrKt + a.

First, notice that the protocol achieves linear communication complexity: in step 2, 2t +
1 parties send a single field element to only one party, P1, who sends in step 3 one
field element to all other parties. This yields a total communication complexity of Θ(n).
Naturally, this only holds assuming that the parties can get the double sharing with linear
communication complexity too, which is discussed in Section 2.3.2.2 below.

A small optimization. Instead of sending a to all parties, P1 can secret-share this value,
so that the parties get JaKt . The rest of the protocol remains the same, changing JzKt ←JrKt + a with JzKt ← JrKt + JaKt . The advantage of doing this is that, since a does not
need to be kept private, t of the shares can be fixed to be 0, and the remaining shares
can be computed from these together with the “secret” a. This means that P1 only needs
to communicate the shares to n− t parties, since t of the parties know already that their
share of a will be 0. This optimization was introduced in [57].

2.3.2.2 Producing Double-Sharings Efficiently

The task for this section is to describe a protocol in which the parties can compute
double-sharings. This protocol could be used in a preprocessing stage, before the in-
puts of the parties are known.

To get started, let us consider the following simple protocol:
5This is formalized as a functionality that samples r internally and acts as the dealer in Shamir secret-
sharing, distributing the appropriate shares to the parties. However, we stress that this chapter is not
concerned with the formalisms of the protocols, so we omit this.
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1. Each Pi for i ∈ [t + 1] samples ri ∈R F and secret-shares this value towards the
parties twice: using degree-t and degree-2t polynomials. The parties obtain JriKt
and JriK2t .

2. The parties produce the double-sharing (JrKt , JrK2t), where JrKt =
∑t+1

i=1 JriKt andJrK2t =∑t+1
i=1 JriK2t .

Since the adversary corrupts t parties, there is at least one honest party among
P1, ... ,Pt+1, which implies that the value of r looks uniformly random to the adversary
who knows all but one of the random summands. Unfortunately, this approach, although
simple, does not suffice for our purposes since it has quadratic communication complex-
ity (each party Pi for i ∈ [t + 1] needs to send shares to all other parties).

The following approach, proposed in [42], enables the parties to produce, using quadratic
communication, a total of Θ(n) double-sharings. As a result, the amortized commu-
nication cost per double-sharing is linear. The protocol works as follows. Let M =
Vann×(n−t)(β1, ... , βn), where β1, ... , βn are mutually-different elements of F.

Preprocessing double-sharings

Output: A set of double sharings {(JriKt , JriK2t)}n−t
i=1

Protocol: The parties proceed as follows
1. Each party Pi samples si ∈R F and secret-shares it using degree-t and degree-2t
polynomials. The parties obtain JsiKt and JsiK2t .

2. The parties compute locally the following shares:


Jr1KtJr2Kt
...Jrn−tKt

 = M⊺ ·


Js1KtJs2Kt
...Jsn−1KtJsnKt

 ,


Jr1K2tJr2K2t
...Jrn−tK2t

 = M⊺ ·


Js1K2tJs2K2t
...Jsn−1K2tJsnK2t

 .

3. The parties output the double sharings {(JriKt , JriK2t)}n−t
i=1 .

Let us analyze that the protocol produces correct double-sharings, for which it suffices
to show that the values r1, ... , rn−t produced by the protocol look uniformly random to
the adversary. We claim that these values are in a 1-1 correspondence with the values
si sampled by the n− t honest parties, which is enough to reach the desired conclusion
as these are uniformly random and unknown to the adversary. To see that the claim
holds, assume for simplicity that the first n − t parties, P1, ... ,Pn−t , are honest. Let
M′ = Van(n−t)×(n−t)(β1, ... , βn−t) and M′′ = Van(n−t)×t(βn−t+1, ... , βn), then M⊺ can be
written in block form asM⊺ = [M′⊺|M′′⊺], so r1

...
rn−t

 = M′⊺ ·

 s1
...

sn−t

+M′′⊺ ·

sn−t+1
...
sn

 .

SinceM′ is invertible, we obtain the desired result. The general case in which the honest
parties may not be P1, ... ,Pn−t is handled in a similar way by taking the appropriate
(n − t)× (n − t) submatrix ofM.
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Regarding communication complexity, observe that in the first step, which is the only
step involving interaction, each party sends a share to each other party, which leads
to a communication complexity of Θ(n2). Since n − t double-sharings are produced, we
conclude that the amortized communication complexity of generating each double-share
is Θ(n2/(n − t)), which is linear in n since n − t > n/2.

2.4 Active and Perfect Security for Two-Thirds Honest Majority

In the previous section we studied a perfectly secure protocol that is secure against a
passive adversary corrupting t parties where t < n/2. The goal now is to extend this to
active security. As mentioned before, this requires us to either lower the threshold from
t < n/2 to t < n/3, or consider statistical instead of perfect security. In this section
we take the first route, that is, we consider two-thirds honest majority and maintain the
requirement on perfect security. The second approach, active and statistical security in
the honest majority setting, is discussed in Section 2.5.

Before we get into the description of our protocol, recall that, as shown in Section 2.2.3, in
the setting under consideration, t < n/3, the parties can reconstruct sharings JsKd with
error-correction (i.e. the parties are guaranteed to learn the correct secret) if d = t , and
with error-detection (i.e. either the parties reconstruct the right secret, or the presence
of errors is detected and the parties abort) if d = 2t . Furthermore, it is described in
Section 2.2.4 how to do this efficiently via the protocol ΠPublicRec.

2.4.1 Actively Secure Multiplication for t < n/3

The tools developed in the previous sections are essential for the construction of an ac-
tively secure version of the multiplication protocol described in Section 2.3.2.1. The main
issue with that protocol when ported to the actively secure scenario lies in opening, or
reconstructing, the secret-shared value JaK2t . To this end we can use the reconstruction
techniques from Section 2.2.4. In this case, d = 2t , and since we assume that t < n/3,
we can take ℓ = n and ensure that the error detection bound ℓ > d + t holds (if d = t ,
then the error correction bound can be achieved, a fact that will be useful later on). The
resulting protocol is described below. It assumes several simultaneous multiplications
are to be processed, given that the reconstruction protocol from the previous section re-
quires t+1 values to be opened to operate efficiently. Furthermore, as the preprocessing
protocol from Section 2.3.2.2, the actively secure method to compute double-sharings we
will discuss in Section 2.4.2 also operates in batches.

Actively secure multiplication protocol via double-sharings

Preprocessing: A double-sharing (JrKt , JrK2t).
Input: Secret-shared values JxKt and JyKt .
Output: Jz = x · yKt .
Protocol: The parties execute the following
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1. The parties compute locally Jx · yK2t ← JxKt · JyKt and JaK2t ← Jx · yK2t − JrK2t
2. The parties call the protocol ΠPublicRec from Section 2.2.4 to learn a.a

3. The parties compute locally and output JzKt ← JrKt + a.
aRecall that this protocol operates in batches of secret-shared data so this would be called once
for many simultaneous secure multiplications.

2.4.2 Instantiating the Offline Phase

The protocol from above required as preprocessing material double-sharings
(JrKt , JrK2t). Unfortunately, the protocol from Section 2.3.2.2 to achieve such task
cannot be used directly in the actively secure setting, with the main reason being the
fact that, when a corrupt party Pi is asked with distributing shares JsiKt and JsiK2t , it
may not do this consistently. More precisely, the underlying secrets in the degree-t and
degree-2t must be equal according to the protocol specification, but Pi may choose
them to be different. Furthermore, what is worse is that Pi can send shares that are not
t/2t-consistent, that is, they may not be the result of evaluating a polynomial of the
appropriate degree on the points α1, ... ,αn. This is very sensitive, since the theory of
error detection and correction that we developed in Section 2.2.2 relies heavily on the
fact that the shares that the parties had were consistent.

The protocol we will consider to deal with this situation is taken from [16], and it makes
use of the so-called hyper-invertible matrices in order to guarantee that the sharings dis-
tributed by each party satisfy the necessary consistency requirements. These are defined
below, and used to generate double-sharings in Section 2.4.2.2.

2.4.2.1 Hyper-Invertible Matrices

A matrix M ∈ Fk×ℓ is said to be hyper-invertible if every square sub-matrix obtained by
taking subsets of the rows and columns ofM is invertible.

An example of a hyper-invertible matrix is the following. Let α1, ... ,αk ,β1, ... , βℓ ∈ F be
all different field elements, and let Muv =

∏
i∈[ℓ]\{v}

βu−αi
αv−αi

for u ∈ [k ], v ∈ [ℓ]. As shown
in [16], the matrixM ∈ Fk×ℓ whose (u, v) entry is given by Muv is hyper-invertible.6

2.4.2.2 Generating Double-Sharings

The protocol to generate the necessary double-sharings using hyper-invertible matrices
is presented below. We letM ∈ Fn×n be a hyper-invertible matrix.

6A generalization of this construction and a full proof of why it is a hyper-invertible matrix can be found
in Section 3.3.1.1.
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Preprocessing double-sharings with active security

Output: A set of double sharings {(JriKt , JriK2t)}ni=2t+1

Protocol: The parties proceed as follows
1. Each party Pi samples si ∈R F and secret-shares it using degree-t and degree-2t
polynomials. The parties obtain JsiKt and JsiK2t , but observe that corrupt parties
may distribute shares inconsistently.

2. The parties compute locally the following shares:
Jr1KtJr2Kt
...JrnKt

 = M ·


Js1KtJs2Kt
...JsnKt

 ,


Jr1K2tJr2K2t
...JrnK2t

 = M ·


Js1K2tJs2K2t
...JsnK2t

 .

3. For each i ∈ [2t], all the parties send their shares of JsiKt and JsiK2t to Pi .

4. Upon receiving these shares, each Pi for i ∈ [2t] checks that the received sharings
of JsiKt and JsiK2t are t and 2t-consistent, respectively. If any of the sharings is not
consistent, or if both are but the reconstructed value is not equal in both cases, Pi

sends abort to all parties and halts.

5. If no party sends an abort message in the previous step, then the parties output the
double-sharings (JriKt , JriK2t) for i ∈ {2t + 1, ... , n}.

To analyze the protocol let us assume without loss of generality that the corrupt parties
are P1, ... ,Pt . We claim that if there are no abort messages, then the following holds:

1. For each i ∈ {2t + 1, ... , n} the sharings JriKt and JriK2t held by the honest parties
are t and 2t-consistent, respectively, and their underlying secrets match.

2. For each i ∈ {2t + 1, ... , n}, the secret ri looks uniformly random and unknown to
the adversary.

For the first claimwe use the fact that no party among P1, ... ,P2t sent an abort message in
step 4. Since P1, ... ,Pt are actively corrupt, they may refrain from sending such message
when they were actually supposed to. However, Pt+1, ... ,P2t are all honest, so if none of
these parties sent an abort message it is because the sharings they received, (JsiKt , JsiK2t)
for i ∈ {t + 1, ... , 2t}, pass the check these parties perform. This means these sharings
are consistent and their underlying secrets match.

Now, let us partitionM in block form as follows:A B C
D E F
G H I

 ,

where A,B,D,E ∈ Ft×t , C,F ∈ Ft×(n−2t), G,H ∈ F(n−2t)×t and I ∈ F(n−2t)×(n−2t). Given
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this partition, we see that, for d = t, 2t , it holds that
Jrt+1KdJrt+2Kd

...Jr2tKd

 = D ·


Js1KdJs2Kd
...JstKd

+ E ·


Jst+1KdJst+2Kd

...Js2tKd

+ F ·


Js2t+1KdJs2t+2Kd

...JsnKd

 .

Since M is hyper-invertible, the square submatrix D is invertible, which means that we
can rewrite the equation above as

Js1KdJs2Kd
...JstKd

 = D−1 ·


Jrt+1KdJrt+2Kd

...Jr2tKd

−D−1E ·


Jst+1KdJst+2Kd

...Js2tKd

−D−1F ·


Js2t+1KdJs2t+2Kd

...JsnKd

 .

Observe that all the sharings that appear in the right-hand side of the equation above
are d-consistent for d = t, 2t , and their underlying secrets are the same: we already
argued this for (Jrt+1Kd , ... , Jr2tKd), and for the remaining shares this holds since these
were distributed by honest parties. As a result, since these properties are preserved
under linear combinations, we see that the shares on the left-hand side also satisfy
said properties. This shows that all sharings provided by the parties, {(JsiKt , JsiK2t)}ni=1,
are t and 2t-degree consistent and the underlying secrets match, which implies that the
same holds for the final double-sharings produced by the protocol, {(JriKt , JriK2t)}ni=2t+1,
since these are obtained as linear combinations of the ones above. This proves the first
claim.

To prove the second claim we observe that we can write
r2t+1

r2t+2
...
rn

 = G ·


s1
s2
...
st

+H ·


st+1

st+2
...
s2t

+ I ·


s2t+1

s2t+2
...
sn

 .

Since I is invertible, we see that (r2t+1, ... , rn) is in a 1-1 correspondence with the vector
(s2t+1, ... , sn), but the latter is chosen at random by the honest parties and is unknown
to the adversary, so (r2t+1, ... , rn) will inherit such properties as well.

Finally, it is easy to see that the communication complexity of the protocol is Θ(n2).
However, since n− 2t > n/3 double-sharings are produced per execution, the amortized
complexity per double-sharing is Θ(n), as required.

2.4.3 Actively Secure Input Phase

So far we have discussed how to deal with multiplications and output reconstruction
when the adversary is behaving actively. The only missing step to completely port the
protocol from Section 2.3.2 to the actively secure setting is the input phase in which each
party distributes shares of its own input. The problem here when the adversary is active
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is the same problem we have already encountered before: corrupt parties may distribute
inconsistent shares.

Consistency is enforced by means of the following protocol. It requires as preprocessing
material a secret-shared value JrKt , where r ∈ F is random only known by the party Pi

who will provide input. This can be generated by taking a double-sharing (JrKt JrK2t),
discarding the degree-2t part (or alternatively ignoring it from the start when generating
the double-sharing), and letting the parties send their shares of JrKt to Pi , which enables
Pi to error correct to learn r . The protocol also requires the broadcast primitive that is
part of the communication channel we assume, as discussed in Section 1.2.6.1. However,
as discussed in Section 1.3.1, in the case in which t < n/3 and the corruption is active,
which is the setting in this chapter, a protocol with perfect security instantiating this
broadcast primitive exists.

Distributing shares of a given input

Input: Party Pi has an input x .
Preprocessing: A secret-shared value JrKt where r ∈ F is random and only known by Pi .
Output: Parties get consistent shares JxKt . If Pi is corrupt then the underlying secret may
not be equal to x .

Protocol: The parties proceed as follows:
1. Pi broadcasts e = x − r .

2. The parties locally compute JxKt = JrKt + e as the final shares of the input x .

If the sender is honest then its input is kept private since the only information revealed
is e = x−r , and since r is uniformly random and unknown to the adversary, this does not
leak anything about x . Furthermore, in case Pi is corrupt, the resulting shares are still
consistent since the they are obtained by adding a publicly known value e to an already
consistently-shared value JrK. Observe that this assumes that e is known by everyone,
which implicitly means that all parties know the same value. This may not be the case
if the rogue Pi sends different values for e to different parties. However, this is easy to
enforce by means of a broadcast protocol, as described below.

2.5 Active and Statistical Security for Honest Majority

In this section we study active security in the honest majority setting, that is, where the
number of corrupted parties t is strictly less than n/2. As discussed in Section 1.3.2, the
best security notion achievable with this threshold is statistical security, which is the
type of security we aim at in this section.

The protocol we will consider here follows a similar approach as the protocol from the
previous section: in a preprocessing phase the parties generate double sharings which
are then used in an online phase to compute multiplications securely. However, the main
issue that will appear in the t < n/2 case is, as we will see, that the adversary can inject
certain errors in the online phase that may cause the computation to be incorrect and,
moreover, this may lead to leakage of sensitive information about the honest parties’
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inputs. This is dealt with by executing a check before the output phase that is intended
to verify that no errors were introduced during the computation.

Throughout this section we will assume that n = 2t+1. This is not only for simplicity: our
protocol is designed to tolerate exactly t corruptions while assuming that there are t+1
honest parties. As mentioned in Remark 1.1, contrary to intuition, it is not generally true
that a protocol that has been designed to withstand t corruptions is also secure against
less than t corruptions, and the one presented in this section is an example of that. We
will discuss this issue in detail towards the end of this section.

2.5.1 Reconstructing Secret-Shared Values

As in the previous protocols, an operation that the parties will need to execute several
times lies in the reconstruction of a secret-shared value JsKd , where the degree d is either
equal to t or 2t . From Section 2.2.2, we see that in our current setting a party receiving n
shares can error-detect if d = t , and moreover, reconstruction of secret-shared values in
this case can be done with a communication complexity of O(n) field elements with the
help of the protocol ΠPublicRec from Section 2.2.4. However, as discussed in Section 2.2.3, if
d = 2t , then the adversary can cause the parties to reconstruct an incorrect secret s + δ
for some (potentially non-zero) chosen δ. Fortunately, sharings of degree 2t are only used
to compute multiplications securely, and, as we will soon see, cheating in this opening
leads to incorrect multiplications which can be verified using different techniques. As
a result, in spite of the adversary being able to cheat in the multiplications, leading to
incorrect results, the validity of these can be checked by the parties.

We will make use of the protocol ΠPublicRec from Section 2.2.4. However, this protocol
does not consider the case d = 2t in which the adversary can cause reconstruction to
result in incorrect values. A secret-shared value JsK2t can be reconstructed with the same
communication complexity of O(n) field elements as follows:

1. The parties send their shares of JsK2t to P1;

2. P1 uses the first 2t + 1 shares s1, ... , s2t+1
7 to interpolate the unique polynomial

f (X) of degree at most 2t such that f (αi ) = si for i ∈ [2t + 1], and sets s = f (α0);

3. P1 sends s to all the parties.

As expected, after the execution of this protocol the adversary can cause the parties to
reconstruct s + δ for some chosen error δ. This can happen if P1 is corrupt and adds this

7Since we assume that n = 2t+1, these 2t+1 shares constitute all the shares, but this method also works
for 2t + 1 < n.
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error when sending the result to the parties 8, or it can also occur even if P1 is honest if
the actively corrupt parties send wrong shares to P1.

2.5.2 Preprocessing Phase

As we have already mentioned, the protocol we will use for the setting t < n/2 resembles
a lot the protocol from Section 2.4 in which parties produce double-sharings (JrKt , JrK2t)
in the preprocessing phase, which are then used to obtain shares of a product JxyKt from
two shared values JxKt and JyKt . This is done by letting the parties locally obtain JxyK2t ,
then open a← JxyK2t − JrK2t and later compute JxyKt ← JrKt + a non-interactively.

We first discuss how the parties can obtain the necessary preprocessing material
(JrKt , JrK2t). In Section 2.4.2 we presented a protocol based on the so-called hyper-
invertible matrices (HIM) to obtain this type of correlation for the case in which t < n/3.
Unfortunately, this protocol is not suitable for our setting in which t < n/2, which can be
seen by thoroughly inspecting the construction. However, in Section 2.3.2.2 we presented
a passively secure protocol for generating double-sharing in the honest majority setting,
and this method will serve as the basis for the actively secure mechanism to produce
double-sharings we need in this section.

Let us begin by recalling briefly how the passively secure protocol from Section 2.3.2.2
works. It begins by asking each party Pi to sample si ∈R F, and then secret-share this
value twice using thresholds t and 2t as (JsiKt , JsiK2t). Then the parties locally apply to
these sharings a matrix that acts as a randomness extractor in order to obtain the final
double-shares.

As mentioned in Section 2.4.2, this protocol is not actively secure, mainly because an
actively corrupt party Pi may cheat when asked to secret-share the value si . This cheating
may take place in different ways:

• Pi does not distribute JsiKt consistently, that is, the shares (si1, ... , sin) of JsiKt sent
by Pi to the other parties are not t-consistent.

• Pi does not distribute JsiK2t consistently, that is, the shares (s ′i1, ... , s ′in) of JsiK2t sent
by Pi to the other parties are not 2t-consistent.

• The shares (si1, ... , sin) and (s ′i1, ... , s
′
in) are t and 2t-consistent, respectively, but the

underlying secrets are not the same.

Although these issues, at a high level, seem harmful for the protocol, we can show that
the ultimate effect they have on the execution is that a multiplication of two shared
values JxKt and JyKt may result in Jx · y + δKt for some adversarially-chosen error δ ∈
8If P1 is actively corrupt then he can even perhaps add different errors to the value sent to different parties,
which results in the parties learning different values. For simplicity in the presentation we assume this
is not the case, that is, the honest parties obtain the same value s + δ. This can be achieved by asking
P1 to use a broadcast channel to send this value. However, this is not necessary as the protocol still
works even if P1 distributes different values, as shown in Section 3.3.2, although as we said we assume
this does not happen for the sake of presentation.
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F. This is of course a problem for the correctness of the protocol, since an adversary
can cause intermediate values to be computed incorrectly. Fortunately, it is possible to
check, quite efficiently, that the multiplications have been computed correctly, which is
explained in Section 2.5.4.

From the observation above, the protocol the parties use in order to generate double-
sharings efficiently is essentially the same as the protocol from Section 2.3.2.2. The
protocol is described explicitly below for the sake of completeness. Let M =
Vann×(n−t)(β1, ... , βn), where β1, ... , βn are different elements of F.

Preprocessing double-sharings

Output: A set of double sharings {(JriKt , JriK2t)}n−t
i=1

Protocol: The parties proceed as follows
1. Each party Pi samples si ∈R F and secret-shares it using degree-t and degree-2t
polynomials. The parties obtain JsiKt and JsiK2t .

2. The parties compute locally the following shares:


Jr1KtJr2Kt
...Jrn−tKt

 = M⊺ ·


Js1KtJs2Kt
...Jsn−1KtJsnKt

 ,


Jr1K2tJr2K2t
...Jrn−tK2t

 = M⊺ ·


Js1K2tJs2K2t
...Jsn−1K2tJsnK2t

 .

3. The parties output the double sharings {(JriKt , JriK2t)}n−t
i=1 .

As mentioned before, even though this protocol is in principle not actively secure (in the
sense that there are seemingly a lot of places where the adversary can cheat to cause a
potentially harmful outcome), we will be able to show that, when this protocol is used
in conjunction with the protocol for multiplying two shared values from Section 2.5.3
below, the end result is that the adversary is able to inject additive errors to the result
of a multiplication. Fortunately, this type of attack can be prevented as described in
Section 2.5.4.

Instead of analyzing in detail the security guarantees of this protocol on their own, we
postpone the analysis to Section 2.5.3 below where we analyze the properties of the
multiplication protocol that aims to produce JxyKt from JxKt and JyKt . However, before
we move into that, we provide in this section a bit of intuition about why is it the case
that none of the attacks proposed above is relevant. In a nutshell, the reason lies in the
fact that, the notion of d-consistency from Definition 2.3 in Section 2.2.1, is only concerned
with the consistency of the shares held by honest parties.

Distributing shares of degree t inconsistently. An actively corrupt party can misbehave
when acting as a dealer in Shamir secret-sharing, and can choose to send arbitrary values
(s1, ... , sn) that are not t-consistent to the parties. This is not a problem nonetheless, or
rather, an adversary can cause the exact same effect even if the dealer is honest, as we
now show.
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For simplicity in the notation, assume that the corrupt parties are P1, ... ,Pt . Since n =
2t +1, there are exactly t +1 honest parties Pt+1, ... ,Pn. Let f (X) ∈ F≤t [X] be the unique
polynomial of degree at most t such that f (αi ) = si for i = t + 1, ... , n. Since the dealer
is actively corrupt, the adversary knows f (X) and therefore it knows s ′i = f (αi ) for i =
1, ... , t . In particular, from Definition 2.3, the parties hold t-consistent shares JsKt =
(s ′1, ... , s

′
t , st+1, ... , sn), where s = f (α0).

In conclusion, even if the dealer is actively corrupt, any set of shares it sends will be by
definition t-consistent since there are exactly t + 1 parties and the shares these parties
receive uniquely define a polynomial f (X) ∈ F≤t [X].

Distributing shares of degree 2t inconsistently. Assume for simplicity in the notation
that the corrupt parties are P1, ... ,Pt . As before, an actively corrupt dealer canmisbehave
and choose to send arbitrary values (st+1, ... , sn) to the honest parties. Since n = 2t + 1
(this also works for n ≥ 2t + 1), for any secret s there exists a polynomial f (X) ∈ F≤2t [X]
such that f (α0) = s and f (αi ) = si for i = t + 1, ... , n. Since the adversary knows f (X), it
knows in particular f (αj) for j = 1, ... , t . This means, according to Definition 2.3, that the
parties trivially hold 2t-consistent shares of any secret.

As in Remark 2.1, this is not a good thing, since it means the adversary can change the cor-
rupt parties’ shares in order to obtain sharings of different values. However, as pointed
out before, this will be acceptable in our protocol: the concrete effect that this type of
attack will have in the overall protocol is that the adversary will be able to add errors to
the output of secure multiplications, but the correctness of these will be verified with a
simple protocol as described in Section 2.5.4.

Shares of degree t and 2t having different secrets. From the two notes above we see
that the adversary cannot, by definition, distribute shares t or 2t-inconsistently. The last
attack it could carry out then in the protocol for preprocessing double-sharings is that
the secret s in the shares of degree t is not the same as the secret s ′ in the shares of
degree 2t . Once again, although the shares of degree t uniquely define a secret s , the
shares of degree 2t are consistent with any possible secret, so there is not even an s ′ de-
fined. As mentioned before, this gap will result in a concrete attack in the multiplication
protocol from Section 2.5.3 below, which can be prevented using certain checks after the
multiplication has been performed as explained in Section 2.5.4.

2.5.3 Online Phase

We now move to the description of the online phase of our protocol. Recall that the
function to be evaluated, F : Fn → F, is given by an arithmetic circuit over F. Let xi ∈ F
be the input of party Pi . As in previous sections, the protocol consists of having the
parties obtain shares Jx1Kt , ... , JxnKt of their inputs, followed by methods to obtain from
two given shared values JxKt and JyKt , shares of Jx + yKt and Jx · yKt . This allows the
parties to obtain shares of all intermediate values of the computation, until shares of
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the output JzKt , with z = F (x1, ... , xn), are produced. At this point the parties can simply
reconstruct this result to learn the output of the computation.

The input phase in which the parties obtain shares of their inputs, is handled in exactly
the same way as in Section 2.4.3, that is, for a party Pi to provide input xi , we assume the
parties have a random shared value JrKt where r ∈R F is only known by Pi . This could be
easily adapted from the protocol to obtain double-shares. Then Pi uses the broadcast
channel to send e = xi − r to all the parties, who define JxiK = JrK + e as their shares of
xi .

Given JxKt and JyKt , it is straightforward for the parties to obtain Jx + yKt given the linear-
ity properties of Shamir secret-sharing. On the other hand, to obtain Jx · yK, the parties
first execute the following protocol, which is exactly the same as the one presented in
Section 2.3.2.1.

Actively secure multiplication protocol via double-sharings

Preprocessing: Double-sharings (JrKt , JrK2t).
Input: Secret-shared values JxKt and JyKt .
Output: Jz = x · yKt .
Protocol: The parties execute the following

1. The parties compute locally Jx · yK2t ← JxKt · JyKt and JaK2t ← Jx · yK2t − JrK2t
2. The parties call the protocol ΠPublicRec from Section 2.5.1 to learn a.

3. The parties compute locally and output JzKt ← JrKt + a.

The main difference of this protocol with respect to the one from Section 2.4.1 is the set
of guarantees this one provides. In the protocol from Section 2.4.1, we could prove that
the parties obtain the correct Jx · yKt at the end of the protocol execution. In our case
here, we will not be able to prove this. This is because, as has been mentioned before,
in our case where t < n/2, opening degree-2t shares cannot be done while ensuring the
integrity of the underlying secret, which is not the case when t < n/3. Here, we show the
following:

Proposition 2.1. Let JxKt and JyKt be inputs to the multiplication protocol above. Then,
at the end of the protocol execution, the parties get shares Jxy + δKt , where δ ∈ F is a
value known to the adversary.

Proof. The result of the call to protocol ΠPublicRec is a + δ = (xy − r) + δ, so the parties
compute Jzy + δK← JrK + (xy − r) + δ in the last step of the protocol.

2.5.4 Verification Phase

As we showed in Proposition 2.1, an active adversary can inject errors to the result of
secure multiplications. This is of course a problem since correctness of the computation
is not guaranteed anymore. Furthermore, it can lead to concrete privacy leakage attacks.
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For example, if n = 3 and F (x1, x2, x3) = (x1 · x2) · x3, a corrupt party could add a non-zero
error in the first multiplication so that the output of the computation is (x1 · x2+ δ) · x3 =
F (x1, x2, x3) + δ · x3. If the adversary corrupts P1 and sets x1 = 0, then the correct output
is always 0 regardless of the inputs of the other parties, so the adversary should not be
able to learn anything about these according to the security definition of MPC. However,
with the attack above, the result becomes 0 + δ · x3, which in particular means that the
adversary can learn x3 by multiplying the result with δ−1.

Given this, it is imperative that, before the parties reconstruct the final result, they check
that no errors have been introduced in any of the multiplications involved in the compu-
tation. The more concrete setting is the following. The parties have (t-consistent) shares
(JxKt , JyKt , JzKt), where z is supposed to be equal to x · y . However, due to adversarial
behavior, it is actually the case that z = x · y + δ for some adversarially chosen value
δ ∈ F, and the parties want to check that δ = 0. At a high level, the method we will
present to address this issue consists of the following. First, the parties generate a triple
such as the one above (JaKt , JbKt , JcKt), where c = a ·b+ ϵ for some adversarially chosen
value ϵ, and in addition, a, b ∈ F are uniformly random and unknown to the adversary.
Then, the parties will make use of this triple of shared values to check the correctness
of z .

Generating the tuple (JaKt , JbKt , JcKt) is straightforward given the tools we have pre-
sented thus far: getting JaKt and JbKt can be done by a simple modification of the pro-
tocol from Section 2.5.2 to obtain double-sharings, without considering the degree-2t
part, and JcKt can be obtained from JaKt and JbKt by applying the multiplication protocol
from Section 2.5.3. Now, using such tuple to check the correctness of z is done with the
following protocol. Below, we let FCoin denote a functionality that returns public random
values to all the parties.

Verifying secure multiplications

Preprocessing: A tuple (JaKt , JbKt , JcKt), where c = a · b + ϵ for some value ϵ ∈ F known
by the adversary, and a, b ∈ F are uniformly random and unknown to the adversary.
Input: Secret-shared values (JxKt , JyKt , JzKt ), where z = x · y + δ for some value δ ∈ F
known by the adversary.
Output: A signal pass/fail.

Protocol: The parties execute the following
1. The parties call s ← FCoin;

2. The parties compute locally JdKt ← JxKt − s · JaKt and JeKt ← JyKt − JbKt
3. The parties call the protocol ΠPublicRec from Section 2.5.1 to reconstruct d and e .

4. The parties compute locally JwK← s · e · JaK + d · JbK + s · JcK + d · e − JzK.
5. The parties call the protocol ΠPublicRec to reconstruct w , and check that w = 0. If this
is the case, output pass. Else, output fail.

Proposition 2.2. Let (JxKt , JyKt , JzKt ) with z = xy + δ be an input to the protocol above.
Then, if δ 6= 0, the probability that the protocol results in the parties outputting pass is
at most 1/|F|. Furthermore, nothing about x or y is learned by the adversary after the
execution of the protocol.
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Proof. Since d = x − s · a, e = y − b, z = x · y + δ and c = a · b + ϵ, we have that

w =s · e · a+ d · b + s · c + d · e − z

=s · (y − b) · a+ (x − s · a) · b + s · (a · b + ϵ) + (x − s · a)(y − b)− (x · y + δ)

=sya− sba + xb − sab + sab + sϵ+ xy − xb − say + sab − xy − δ
=s · ϵ− δ.

From this, we see that w = 0 if and only if s · ϵ − δ = 0, or s · ϵ = δ. Assume that δ 6= 0
and nevertheless w = 0. Then ϵ 6= 0 since otherwise δ = s · 0 = 0, but this implies that
s = δ/ϵ, which happens with probability 1/|F| since s is uniformly random and sampled
independently of δ and ϵ.

Remark 2.3. The verification step above can be improved so that, when many checks are
performed simultaneously (as expected in an actual secure computation scenario), the
overhead in communication by performing this check is very small. More concretely, this
overhead can be made sub-linear in the number of multiplications being checked thanks
to the novel techniques presented in [57].

2.6 Passive Security for Dishonest Majority

All the protocols we have seen so far assume that the adversary corrupts strictly less
than n/2 or n/3 parties. However, if such assumption is violated, privacy would break,
which can be seen from the fact that if the adversary corrupts more parties than the
threshold used for Shamir secret sharing then the underlying secret is revealed.

It would be ideal if we could design protocols where, from the view of each single party,
their input is kept private even if all of the other parties collude against the single party.
In other words, we would like to guarantee security under an adversary corrupting t
parties, even if t grows as large as n − 1, leaving only one honest party. This setting,
where the only bound on t is t < n, is called dishonest majority since in principle a
majority of the parties could be corrupt; this is in contrast to the case in which t < n/2
where the majority of parties are guaranteed to be honest.

In this section we explore an MPC protocol in the dishonest majority setting with passive
security, which means that each party’s input is secure even if all the other parties col-
lude, as long as these parties follow the protocol specification. In Section 2.7 we explore
the case of active security, which ensures privacy even if the other parties misbehave.
This is the strongest possible setting, but it is also, naturally, the most expensive.

Another important aspect of the dishonest majority setting is that it includes the relevant
case in which n = 2 and t = 1, since in this case none of the bounds t < n/2 nor
t < n/3 hold. This particular scenario appears in many different applications, so it must
be considered as well.
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2.6.1 Additive Secret-Sharing

We assume that t = n − 1. Unlike the results from Section 2.5, assuming t reaches the
maximum possible bound is only done for the sake of clarity in the notation, instead of
being a security feature. All of our results carry over if t < n − 1.

Additive secret-sharing

The dealer secret-shares a value s ∈ F among n parties P1, ... ,Pn as follows.

1. Sample s1, ... , sn−1 ∈R F and define sn = s − (s1 + · · ·+ sn−1).

2. Distribute the value si to party Pi , for i ∈ [n].

In other words, the tuple (s1, ... , sn) is uniformly random in (Z/2kZ)n, constrained to
s = s1 + · · ·+ sn. As a result, for every set A ⊆ [n] with |A| ≤ n− 1, the distribution of the
shares {si}i∈A is uniformly random, and in particular, it is independent of the secret s .

When the parties have shares as above, we denote JsK = (s1, ... , sn). Notice that, given
two shared values JxK and JyK, the parties can locally add/subtract their shares of these
values to obtain Jx ± yK. Furthermore, given a value c ∈ F known to all the parties,
the parties can locally obtain c JxK by multiplying c to every share, and they can obtainJx ± cK by asking only one party, say P1, to add/subtract the value of c to its share.

2.6.2 Protocols for Secure Multiplication

As in previous sections, we obtain a secure computation protocol by asking the parties
to distribute shares of their inputs (which is trivial since, if x is known to party Pi , the
parties can non-interactively obtain JxK by writing x = x1 + · · ·+ xn where xj = 0 if j 6= i ,
and xi = x), followed by the parties executing different subprotocols to obtain Jx + yK
and JxyK from shared values JxK and JyK. As we mentioned before, the case of addition
can be easily handled by the parties adding their shares locally. However, obtainingJxyK is, as usual, a much harder task. Furthermore, what complicates matters in the
dishonest majority scenario is that, as we have mentioned already in Section 1.3.3, this
setting requires the use of tools from the public-key cryptography domain, which are, in
their nature, much more expensive than the information-theoretic techniques we have
been making use of so far.

2.6.2.1 Product-to-Sum Conversion

We begin by reducing the problem of obtaining JxyK from JxK and JyK to a simpler prob-
lem. Write JxK = (x1, ... , xn) and JyK = (y1, ... , yn), so

xy = (x1 + · · ·+ xn)(y1 + · · ·+ yn) =
n∑

i=1

xiyi +
∑

i ,j∈[n],i ̸=j

xiyj .
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The goal is to obtain shares of each of these summands, which can in turn be added
locally to obtain shares of x ·y . Since each term of the form xiyi is known by party Pi , the
parties can obtain JxiyiK trivially by setting Pi ’s share to be xiyi , and the setting the other
shares to be 0. The main challenge lies on the terms of the form xiyj for i 6= j , since one
factor is known by one party Pi , and the other factor is known by a different party Pj .

Assume the existence of a protocol for product-to-sum conversion, in which Pi inputs xi ,
Pj inputs yj , and Pi and Pj receive zi and zj respectively, with these values being uniformly
random constrained to xiyj = zi + zj . With such a tool, the parties can obtain JxiyjK by
letting Pi and Pj execute the product-to-sum protocol, obtaining zi and zj , and defining
the other parties’ shares to be zero.

From our observations above, the parties can locally compute JxiyiK for i ∈ [n], and,
with the help of a product-to-sum conversion protocol, they can also compute JxiyjK for
i , j ∈ [n] and i 6= j . As a result, they can compute shares of x and y as follows.

JxyK = n∑
i=1

JxiyiK + ∑
i ,j∈[n],i ̸=j

JxiyjK .

2.6.2.2 Product-to-Sum Conversion Based on Homomorphic Encryption

From the previous section, we see that, in order for the parties to compute JxyK from JxK
and JyK, it suffices to design a two-party protocol for product-to-sum conversion. Recall
that, in such protocol two parties, which we denote by P1 and P2, each input a value x1
and x2, and they receive z1 and z2, which are uniformly random values constrained to
x1x2 = z1 + z2. In this section we show how such primitive can be instantiated making
use of Additively Homomorphic Encryption, or AHE for short. We remark that our aim is
simply to provide intuition on how this can be done, so we do not provide a lot of details
nor present a lot of formalism.

An encryption scheme consists of an encryption and decryption algorithms Encpk(·) and
Decsk(·) such that, intuitively:

1. Encpk(m) does not leak anything about the message m if the key pair (sk,pk) is
sampled by a sampling algorithm.

2. If c = Encpk(m), then m = Decsk(c).

In an additively homomorphic encryption scheme (AHE), in addition, there is a way to
“add/subtract” the ciphertexts to obtain encryptions of the respective operations on
the plaintexts, that is, given c = Enck(x) and d = Enck(y), it is possible to compute
d ± e = Enck(x ± y). An example of an additively homomorphic encryption scheme is
Paillier’s [70]. Such an encryption scheme can be used to instantiate the product-to-sum
conversion primitive as follows.
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Secure multiplication

Input: Party Pi has input xi , for i ∈ {1, 2}
Setup: Key pair (sk,pk) with pk known by P1 and P2, and sk known by P1. Output: Pi gets
zi for i ∈ {1, 2}, where (z1, z2) is uniformly random constrained to z = z1 + z2.
Protocol:

1. P1 sends c = Encpk(x1) to P2.

2. P2 samples z2 and sends d = x2 · c − Encpk(z2) to P1

3. P1 computes z1 = Decsk(d)

We see that P2 does not learn anything about x1 since it only receives c = Encpk(x1),
which by the properties of the encryption scheme, completely hides x1. On the other
hand, P1 decrypts z1 = x2 · x1 − z2, as desired.

2.6.3 Preprocessing Model

The tools we have described so far enable the parties to securely compute any arithmetic
circuit comprised of additions and multiplications over the finite field F: the parties
hold additive shares of the inputs to the computation, addition gates can be processed
non-interactively, and multiplication gates make use of the method from Section 2.6.2,
which relies on an AHE scheme. Unfortunately, this approach would provide poor effi-
ciency when compared to the other MPC protocols we have explored in precious sections.
These protocols, to process multiplication gates, only required simple arithmetic over F,
while the use of AHE techniques, and in general, the different tools used in practice to
perform secure multiplication in the dishonest majority settings, is considerably more
expensive.

Unfortunately, the use of these techniques is unavoidable when the adversary corrupts
more than amajority of the parties, even if the corruption is passive. Given this limitation,
an standard approach to limit its effect in practice is to split the computation in two
phases: an offline phase, also called preprocessing phase, which is independent of the
inputs of the computation, and an online phase, which now makes use of the inputs. The
online phase is designed to be much more efficient than the protocol we have sketched
so far. In fact, this phase typically achieves information-theoretic security and onlymakes
use of simple arithmetic operations, so it achieves high efficiency. This way, by pushing
the offline phase to a much earlier time before the parties set their inputs, say, when the
parties are idle, the execution of the MPC protocol is much more efficient from a practical
perspective, counting the latency from the time the parties provide input to the time they
produce the output.

2.6.4 Offline Phase

To accelerate the computation of secure multiplications in the online phase, the parties
will need to produce a set of multiplication triples. A multiplication triple, also called
Beaver triple, is a tuple of the form (JaK , JbK , JcK), where a, b are uniformly random in
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F and unknown to any party, and c = a · b. In the offline phase, the parties generate
one such tuple for every multiplication gate expected in the arithmetic circuit under
consideration. Notice that these tuples only contain random data and do not make use
of the inputs of the computation, which are used later in the online phase. As we have
mentioned, this is crucial for the preprocessing paradigm to provide any benefit since, as
we will see, it is in the production of these tuples where the parties spent most of their
computational resources, in order to be able to compute the online phase in a much
more efficient way.

To generate a multiplication triple, the parties can proceed as follows.

Generating multiplication triples with passive security

Output: A multiplication triple (JaK , JbK , JcK), where a, b are uniformly random in F and
unknown to the adversary, and c = a · b.
Protocol:

1. Each party Pi samples ai , bi ∈R F. This leads to sharings JaK = (a1, ... , an) andJbK = (b1, ... , bn).

2. The parties execute a multiplication protocol to obtain JcK, where c = ab.

3. The parties output the shares (JaK , JbK , JcK).
Notice that a = a1 + · · ·+ an and b = b1 + · · ·+ bn look uniformly random and unknown
to the adversary since there is at least one honest party contributing with a uniformly
random summand in each of these expressions.

2.6.5 Online Phase

Now we show how the parties can make use of a multiplication triple (JaK , JbK , JcK) to
securely obtain in the online phase JxyK from JxK and JyK, in a much more efficiently way
than simply using a multiplication protocol like the one from Section 2.6.2.

Multiplication based on multiplication triples

Input: Shared values JxK and JyK.
Output: Shared value JzK, where z = xy .
Preprocessing: Multiplication triple (JaK , JbK , JcK)
Protocol:

1. The parties compute locally JdK← JxK− JaK and JeK← JyK− JbK
2. The parties send their shares of JdK and JeK to each other to learn d and e .a

3. The parties compute locally JzK← d JbK + e JaK + JcK + de .
aThis can be optimized by asking parties to send their shares to one single party, say P1, who
reconstructs d and e and announces these values to the parties.

To see that the protocol works as intended, observe first that, given that d = x − a,
e = y − b, and c = ab, it holds that db + ea + c + de = xy , so the protocol indeed
produces shares of x ·y . On the other hand, nothing is leaked about x or y since the only
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values that are opened during the protocol execution are d and e , which look uniformly
random to the adversary given that a and b are random and unknown to the adversary. In
particular, notice that the protocol is perfectly secure. Furthermore, the protocol shines
from its simplicity, involving only the reconstruction of two secret-shared values and
simple local arithmetic.

2.7 Active Security for Dishonest Majority

In Section 2.6 we described a protocol for secure computation in the dishonest major-
ity setting, assuming the corruption is passive. However, that protocol is not secure if
the corrupted parties behave maliciously. As an example of what goes wrong when the
corruption is active, consider a secret-shared value JxK = (x1, ... , xn). Suppose that, at re-
construction time, the corrupt parties Pi for i ∈ C change their share from xi to x ′i = xi+δi
for some δi ∈ F. Since there is no method for the honest parties to detect this change,
the reconstructed value would be

∑
i∈C x

′
i +
∑

i∈H xi =
∑n

i=1 xi +
∑

i∈C δi = x + δ, where
δ =

∑
i∈C δi . In particular, the adversary can cause the reconstruction to lead to an in-

correct value, similar to what happened in Section 2.5.1 when shares of degree 2t had to
be reconstructed. This was fixed in the protocol for t < n/2 by noticing that the ultimate
effect that this attack has is that the adversary can affect the result of secure multi-
plications, which can be checked with a verification protocol. In our current dishonest
majority setting this “share-modification” attack is much more devastating, since it does
not only affect multiplications but every single step that requires an opening.

To fix the issue of the adversary modifying the corrupt parties’ shares, we need to add
certain “redundancy” to the sharings, comparable to the redundancy present in Shamir
shares for t < n/2. This comes in the form of a tool calledMessage Authentication Codes,
or MACs for short. This term is taken from the symmetric key cryptography literature, and
in general, we use it to represent a primitive that guarantees data integrity, that is, that an
adversary cannot modify certain piece of data without being detected. This is precisely
the type of tool we need in our current context to disallow the adversary from modifying
the shares of the corrupt parties.

MACs are used in order to authenticate the parties’ shares so that they cannot change
them at a later point, and the way these are used is divided into two. In the first approach,
described in Section 2.7.1, each single party has an extra piece of information to check
the integrity of every other party’s share at reconstruction time. The second approach,
described in Section 2.7.2, consists of all the parties jointly having a way of checking not
the integrity of each individual share, but rather the integrity of the reconstructed secret.
This works better for a large number of parties since it is not necessary for every party
to hold authentication information of the share held by each other party.

Both of these methods are based on the following basic idea for ensuring integrity. Given
a piece of data m ∈ F, compute a random value α ∈R F, and let τ = α · m. Integrity is
checked by verifying that m, multiplied by the value α, results in τ . If m is modified as
m′ = m + δ and τ is modified as τ ′ = τ + ϵ, then the only way in which αm′ can equal τ ′
is if αδ = ϵ. If δ 6= 0, that is, if the data m was indeed modified to a different m′, then this
equation translates to α = ϵ/δ. If we somehow guarantee that ϵ and δ are independent
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of α, then, given that α is uniformly random in F, this equation can only be satisfied with
probability 1/|F|.

2.7.1 Integrity via Pairwise MACs

We begin by presenting the construction in which each party has a way to check the share
announced by each other party. This construction was proposed initially in [19].

Additive secret-sharing with pairwise MACs

The dealer secret-shares a value s ∈ F among n parties P1, ... ,Pn with pairwise MACs as
follows.

1. Sample s1, ... , sn ∈ F uniformly at random constrained to s = s1 + · · ·+ sn.

2. For each i , j ∈ [n], the dealer does the following:
• Sample (α

(s)
ij ,β

(s)
ij ) ∈R F.

• Compute τ (s)ji = α
(s)
ij sj + β

(s)
ij .

3. Distribute the tuple si = (si , {(α(s)
ij ,β

(s)
ij )}j∈[n], {τ

(s)
ij }j∈[n]) to party Pi , for i ∈ [n].

Throughout this subsection we will denote by 〈s〉 the situation in which the parties have
shares (s1, ... , sn) of s , with the additional redundancy, as above. Notice that this type of
sharing does not leak anything about s to the adversary.

2.7.1.1 Reconstructing secret-shared values

Now, assume the parties have shares (s1, ... , sn) of some value s , with si =

(si , {(α
(s)
ij ,β

(s)
ij )}j∈[n], {τ

(s)
ij }j∈[n]). At reconstruction time, each party Pi announces

(s ′i , {τ
′(s)
ij }j∈[n]), where (s ′i , {τ

′(s)
ij }j∈[n]) = (si , {τ

(s)
ij }j∈[n]) for at least one i ∈ [n], which

corresponds to the indexes of the honest parties who announce their shares correctly.
To check the validity of these values, each party Pi executes the following.

Reconstructing shared values with pairwise MACs

Given 〈s〉 = (s1, ... , sn), with si = (si , {(α(s)
ij ,β

(s)
ij )}j∈[n], {τ

(s)
ij }j∈[n]), the parties reconstruct

s as follows:

1. At reconstruction time, each party Pi sends si to all the other parties and τ (s)ij to
party Pj .

2. Each party Pi checks if for all j ∈ [n] it holds that τ (s)ji = α
(s)
ij sj + β

(s)
ij . If so then Pi

reconstructs the value s = s1 + · · ·+ sn. Else, the parties abort.

Proposition 2.3. If the protocol above does not result in abort, then its output is the
correct s with probability at least 1− 1/|F|.
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Proof. Assume the parties did not abort, and let i0 ∈ H. Let (s ′j , τ
′(s)
ji0

) for j ∈ C be the
actual values sent by the corrupt parties to Pi0 . Since Pi0 did not abort, it holds that, for
all j ∈ C, τ ′(s)ji0

= α
(s)
i0j

s ′j + β
(s)
i0j
. Let us write s ′j = sj + δj and τ ′(s)ji0

= τ
(s)
ji0

+ ϵj for j ∈ C.
Recalling that τ (s)ji0

= α
(s)
i0j

sj + β
(s)
i0j
, the equations above are equivalent to ϵj = α

(s)
i0j
δj for

j ∈ C.

Now, suppose that δj0 6= 0 for some j0 ∈ C. From the above we have that α(s)
i0j0

=
ϵj0
δj0
. It

is easy to see that the view of the adversary before the execution of the reconstruction
protocol is independent of αi0j for j ∈ C since the adversary only sees τji0 = α

(s)
i0j
· sj +βi0j ,

but the uniformly random value βi0j is unknown to the adversary, which perfectly hides
the term α

(s)
i0j
· sj . From this, we see that the errors δj0 and ϵj0 added by the adversary are

independent of the uniformly random value α(s)
i0j0
, so the equation α(s)

i0j0
=

ϵj0
δj0
from above

can only be satisfied with probability 1/|F|.

We obtain that, except with probability 1/|F|, it holds that δj = 0 for all j ∈ C, so the
announced shares si for i ∈ [n] are all correct and therefore the reconstructed value is
correct as well.

2.7.1.2 Local Operations

Finally, to show that our secret-sharing scheme is suitable for secure computation, we
need to show that basic operations can be handled locally by the parties. This is shown
below.

Addition/Subtraction. Assume the parties have two shares values 〈x〉 = (x1, ... , xn)
and 〈y〉 = (y1, ... , yn), with xi = (xi , {(α

(x)
ij ,β

(x)
ij )}j∈[n], {τ

(x)
ij }j∈[n]) and yi =

(yi , {(α
(y)
ij ,β

(y)
ij )}j∈[n], {τ

(y)
ij }j∈[n]). According to our description of the sharing proce-

dure, the values α(x)
ij and α

(y)
ij are sampled separately when sharing the value x and

y . However, to make this scheme compatible with local addition and subtraction, we
need to assume that α(x)

ij ,α
(y)
ij for i , j ∈ [n] are sampled uniformly at random with

αij := α
(x)
ij = α

(y)
ij , or, more precisely, that the dealer samples and distributes αij ∈R F

once, and uses these to compute the values {τ (z)ij }j∈[n] for every new secret-shared value
z .

To obtain 〈x + y〉, each party Pi defines zi as (zi , {(αij ,β
(z)
ij )}j∈[n], {τ

(z)
ij }j∈[n]), where:

zi = xi + yi

β
(z)
ij = β

(x)
ij + β

(y)
ij , j ∈ [n]

τ
(z)
ij = τ

(x)
ij + τ

(y)
ij , j ∈ [n].

Subtraction works in a similar fashion.
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Canonical shares of public values. Let c be a publicly known value, that is, a value
known by all the parties. The parties can obtain shares 〈c〉 by defining ci =

(ci , {(αij ,β
(c)
ij )}j∈[n], {τ

(c)
ij }j∈[n]) as follows.

ci =

{
0 for i ∈ [n] \ {1}
c for i ∈ {1}

β
(c)
ij =

{
0 for i ∈ [n], j ∈ [n] \ {1}
−αij · c for i ∈ [n], j ∈ {1}

τ
(c)
ij =

{
0 for i , j ∈ [n] .

Each party Pi can compute its share ci locally, and, moreover, it can be easily checked that
τ
(c)
ij = αjici + β

(c)
ij for i , j ∈ [n], as required by the syntax of the secret-sharing scheme.

2.7.2 Integrity via Global MACs

In the previous method from Section 2.7.1 to add integrity to the basic additive secret-
sharing scheme JsK = (s1, ... , sn), for each (ordered) pair of parties (Pi ,Pj), Pi could
verify the correctness of Pj ’s share sj by means of a key (αij ,β

(s)
ij ) and a tag τ (s)ji held

by s . This way, if any of the announced shares is incorrect, the check the honest party
performs would fail, which results in the parties aborting. However, the main drawback
with this approach is that each party Pi must hold a key and tag with respect to every
other single party Pj , which ultimately means that the size of each party’s share grows
linearly with n (more concretely, each party’s share consists of 1 + 3n elements in F.)
This may matter little if n is relatively small, which is the case in the relevant setting of
two-party computation, for example. However, for a large number of parties, a share size
that grows as Ω(n) may be just too large.

Given the above, we present in this section a different method to ensure integrity that
only adds a small overhead to the size of each share with respect to the basic additive
secret-sharing scheme. This was first proposed in the work of [43]. To provide intuition on
how this method works, recall that the main goal is to add some redundant information
to a given additively-shared value JsK = (s1, ... , sn) so that, when the parties announce
their shares (s ′1, ... , s ′n), the parties can verify that the reconstructed value s ′ = s ′1+· · ·+s ′n
is indeed correct. The method from Section 2.7.1 ensures this by providing the parties with
a method for checking that each party’s share s ′i is announced correctly, that is, si = s ′i ,
which implies that s ′ = s . However, a crucial observation is that, ultimately, what is
desired is that s ′ = s , which can happen even if s ′i = si for some values of i . Hence, the
core idea is to add integrity not to each individual share, but rather to the shared value
s itself. This is described in detail below. Notice that each party’s share is now made of
only 3 elements in F.
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Additive secret-sharing with global MACs

The dealer secret-shares a value s ∈ F among n parties P1, ... ,Pn with a global MAC as
follows.

1. Sample s1, ... , sn ∈ F uniformly at random constrained to s = s1 + · · ·+ sn.

2. Sample α(s)
1 , ... ,α

(s)
n ∈R F, and let α(s) =

∑n
i=1 α

(s)
i .

3. Sample γ(s)1 , ... , γ
(s)
n ∈ F uniformly at random constrained to α(s) · s =

∑n
i=1 γ

(s)
i .

4. Distribute the tuple si = (si ,α
(s)
i , γ

(s)
i ) to party Pi , for i ∈ [n].

For the sake of this subsection, we denote by 〈s〉 the situation in which the parties have
shares (s1, ... , sn) of s , with the additional redundancy, as above. Intuitively, wemay write
〈s〉 = (JsK , JαK , Jα · sK).
2.7.2.1 Reconstructing Secret-Shared Values

Partial openings. Assume now that the parties have additive shares 〈s〉 = (s1, ... , sn)
of some value s . By partially opening 〈s〉, we mean the following:

1. Each party Pi sends their additive share si of JsK to P1.

2. P1 computes s = s1 + · · ·+ sn and then he broadcasts P1 to all parties.

This basic opening does not ensure the correct value is reconstructed, hence the name
partial. In this case the adversary can cause the reconstruction to be s + δ, where, fur-
thermore, δ can depend on s if P1 is corrupted.

Commit-and-open. Before we describe the mechanism for the parties to reconstruct
values correctly, we describe another type of opening that does not necessarily ensure
that the reconstructed value is correct, but at least guarantees that the added adver-
sarial error is independent of the secret. For this construction we will need to make
use of a cryptographic tool known as a commitment. For a formal treatment on these
see for example [38]. Intuitively, a commitment scheme is a pair (Commit,Open) where
Commit(m, r) allows a participant to “commit” to a value m using a uniformly random
“key” r , and Open(m, r , c) checks whether the commitment c corresponds tom and r . The
basic properties of such a scheme are (1) Commit(m, r), for a uniformly random r , does
not reveal anything about m and (2) given c = Commit(m, r), it is not possible to find m′

and r ′ with m 6= m′ such that Open(m′, r ′, c) reports that the commitment c corresponds
to m′, r ′. An effective construction of such a scheme consists of Commit(m, r) = H(m‖r),
where H is a cryptographic hash function.

With this tool at hand, the parties commit-and-open to a shared value JzK = (z1, ... , zn)
as follows.
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1. Each party Pi samples ri and computes the commitment ci = Commit(zi , ri ). Then
Pi broadcasts ci .

2. After all these values are broadcast, each party Pi broadcasts (zi , ri ).

3. The parties check that, for all i ∈ [n], Open(z ′i , r ′i , c ′i ) accepts, where c ′i and (z ′i , r
′
i )

are the values broadcast by Pi in the previous two steps. If Open(z ′i , r ′i , c ′i ) rejects,
then the parties abort.

A corrupt party Pi may still lie about its own share by broadcasting zi+δi , so the resulting
reconstructed value may still be incorrect. However, Pi only broadcasts zi + δi after he
has broadcasted the commitment ci , and by the properties of the commitment scheme
sketched above, this party cannot announce a different share than the one it has com-
mitted to, which means that Pi has chosen δi based on the information sent in the first
part of the protocol. At this stage only commitments to the shares have been sent, which
leak nothing about the shares themselves, so the possible errors δi are independent of
the other shares and hence independent of the secret, as desired.

Reconstruction. Let 〈s〉 = (s1, ... , sn) be a value shared by the parties. Now we show
how to put together the different reconstruction methods from above so that the parties
learn s correctly.

Reconstructing shared values with global MACs

Given a shared value 〈s〉 = (JsK , JαK , Jα · sK), the parties reconstruct s as follows:
1. The parties partially open s ′ ← JsK = (s1, ... , sn).

2. The parties compute locally JµK← Jα · sK− s ′ JαK.
3. The parties commit-and-open µ′ ← JµK. If µ′ = 0, then the parties accept s ′ as the
opened value. Else, the parties abort.

Proposition 2.4. If the protocol above does not result in abort, then each party outputs
s with probability at least 1− 1/|F|.

Proof. Let us write s ′ = s + δ, where δ is an additive error introduced by the adversary
that might depend on s . Also, let us write µ′ = µ + ϵ, where ϵ is also an additive error
introduced by the adversary, but this, unlike δ, does not depend on the value of the secret
µ. We have that

µ′ = µ+ ϵ = (αs − s ′α) + ϵ = αs − (s + δ)α+ ϵ = ϵ− α · δ,

so µ′ = 0 if and only if ϵ− α · δ = 0.

Now, assume that δ 6= 0, we would have that α = ϵ/δ, and since ϵ is chosen independently
of α, which is uniformly random, this equation can only be satisfied with probability
1/|F|. From this we see that, if the protocol does not result in abort, δ = 0 except with
probability 1/|F|, which means that the reconstructed value is s ′ = s .
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2.7.2.2 Local Operations

Addition/Subtraction. Given two shared values 〈x〉 = (x1, ... , xn) and 〈y〉 = (y1, ... , yn),
with xi = (xi ,α

(x)
i , γ

(x)
i ) and yi = (yi ,α

(y)
i , γ

(y)
i ) for i ∈ [n], it is possible for the parties to

locally obtain shares 〈x + y〉. This requires that αi := α
(x)
i = α

(y)
i , that is, the dealer sam-

ples α1, ... ,αn ∈R F once, and uses α =
∑n

i=1 αi to define the shares of all subsequent
values. This way, if 〈x〉 = (JxK , JαK , Jα · xK) and 〈y〉 = (JyK , JαK , Jα · yK), 〈x + y〉 may be
computed locally exploiting the homomorphic properties of basic additive secret-sharing
as (JxK + JyK , JαK , Jα · xK + Jα · yK). More precisely, the shares (z1, ... , zn) are defined as
zi = (zi ,αi , γ

(z)
i ), where zi = xi + yi and γ(z)i = γ

(x)
i + γ

(y)
i for i ∈ [n].

Canonical shares of public values. Given a value c ∈ F known by all the parties, the
parties can obtain shares 〈c〉 = (c1, ... , cn) by defining ci = (ci ,αi , γ

(c)
i ), with ci = 0 for

i ∈ [n] \ {1}, ci = c for i = 1, and γ(c)i = αi · c for i ∈ [n].

2.7.3 Online Phase

Let 〈·〉 denote “authenticated” sharings as the ones from either Section 2.7.1 or Sec-
tion 2.7.2. These have in common that local addition/subtraction of shared values, to-
gether with local multiplication and addition/subtraction of publicly known values, is
possible. Furthermore, when reconstructing secret-shared values, although the adver-
sary may initially cause the parties to open a shared-value incorrectly, the parties can
execute a verification step that ensures that, with high probability, the opened value
under consideration is reconstructed correctly.

For our protocol we assume that the extra data required for the authenticated secret-
sharing scheme 〈·〉, like the necessary keys and tags, or their shares, depending on
whether the authentication mechanism chosen is pairwise or global MACs, is computed
by the parties in a preprocessing phase. During this phase the parties also obtain a
multiplication triple (〈a〉 , 〈b〉 , 〈c〉) with a, b ∈R F uniformly random and unknown to the
adversary and c = a · b, for every multiplication gate in the circuit under consideration.
Furthermore, for every input gate corresponding to party Pi , the parties have 〈r〉, where
r ∈ F is uniformly random and known only to Pi .

With these tools at hand, the parties can securely compute the given arithmetic circuit
in a similar way as in Section 2.6.5. Multiplication gates are processed in essentially the
same way: the parties reconstruct a masked version of the inputs to the multiplication
gate, making use of a multiplication triple. However, since the secret-sharing scheme 〈·〉
is more complex than simple additive secret-sharing J·K, it is not possible for the parties
to obtain shares of the inputs to the computation non-interactively. This is achieved in a
similar way as the protocol from Section 2.4.3, by letting each party broadcast a masked
version of their inputs using random values that are secret-shared, and then the parties
add this publicly known value to these shares. This is detailed below.

103



Chapter 2 Some Essential MPC Constructions

Secure computation based on authenticated secret-sharing

Offline phase: The parties obtain from the preprocessing phase:

• The necessary keys/shares for the secret-sharing scheme 〈·〉

• A multiplication triple (〈a〉 , 〈b〉 , 〈c〉) for every multiplication gate

• For every input gate with owner Pi , a uniformly random shared value 〈r〉 only known
to Pi .

Online phase: The parties execute the following.
Input gates. For every party Pi holding input x , the parties execute the following. Let 〈r〉

be a random shared value, where Pi knows r .
1. Pi broadcasts e = x − r .
2. The parties compute the sharings 〈x〉 ← 〈r〉+ e .

Addition gates. These are handled locally by using the properties of the secret-sharing
scheme 〈·〉.

Multiplication gates. Given two shared values 〈x〉 and 〈y〉, the parties obtain 〈xy〉 as fol-
lows. Let (〈a〉 , 〈b〉 , 〈c〉) be a multiplication triple.
1. The parties compute locally 〈d〉 ← 〈x〉 − 〈a〉 and 〈e〉 ← 〈y〉 − 〈b〉
2. The parties reconstruct d ← 〈d〉 and e ← 〈e〉.
3. The parties compute locally 〈z〉 = d 〈b〉+ e 〈a〉+ 〈c〉+ de .

Output gates. The parties reconstruct 〈z〉 for every output shared value.

As with the protocol from Section 2.6, privacy is guaranteed in the input phase since the
input x is masked with the random value r when Pi broadcasts e = x − r , and similarly
for the reconstructed values d = x − a and e = y − b in the multiplication. Correctness
follows from the fact that, if d = x − a, e = y −b and c = ab, it holds that db+ ea+ c+de
is equal to xy .
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MPC Techniques over Z/2kZ
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Chapter 3

Two-Thirds Honest Majority MPC over Z/2kZ

In this chapter we begin with the first contribution of this thesis, which consists in the de-
sign of an MPC protocol to securely compute functions F : (Z/2kZ)n → Z/2kZ expressed
as an arithmetic circuit over Z/2kZ, ensuring perfect security against an active adversary
corrupting t parties, where t < n/3. We focus on security with abort, which is captured in
the functionality by allowing the adversary to cause the parties to abort, as mentioned
in Section 1.2.6.2. Our protocol can be enhanced to achieve guaranteed output delivery
using standard techniques, and this is in fact what is achieved in the original work of [2].
We provide a more detailed discussion on this topic in Section 3.4.

In Section 2.4 we studied one protocol in the setting of active and perfect security with t <
n/3 for the case in which the arithmetic circuit is expressed over a field F. Furthermore,
this field needs to satisfy |F| ≥ n + 1 for Shamir secret-sharing to work, as explained in
Section 2.2, and this restriction must be strengthened to |F| ≥ 2n for the construction of
hyper-invertible matrices from Section 2.4.2.1 to work. As a first step towards obtaining
a protocol over Z/2kZ, we generalize in Section 3.1 the construction of Shamir secret-
sharing from F to any commutative ring R satisfying certain property that generalizes
the notion of |F| being large enough. This is based on the results in the original work
of [51]

Once this is set, we can use the template of the protocol from Section 2.4 to obtain a
protocol for computation over Z/2kZ. Unfortunately, the ring Z/2kZ does not satisfy the
necessary condition to admit the construction of Shamir secret-sharing. To alleviate this
issue, we define the so-called Galois rings in Section 3.2, which are a generalization of
the ring Z/2kZ and allow for the construction of Shamir secret-sharing from Section 3.1.
With these tools, we finally discuss in Section 3.3 a construction of a perfectly secure MPC
protocol with t < n/3 over any sub-Galois ring of a larger Galois ring, which includes in
particular the case of Z/2kZ. As we will see, although our protocol resembles a lot the
one described in previous sections over fields, several optimizations are needed to help
mitigate the overhead of using the Galois extension rings.

The contents of this chapter are mostly based on the original work of [2], although ideas
from [51] are used in Section 3.1.
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3.1 Shamir Secret-Sharing over Arbitrary Commutative Rings

An interesting and relevant result is that Shamir secret-sharing, as presented in Sec-
tion 2.2, is not restricted to fields only. For example, in the original work of [2] it is shown
that Shamir secret-sharing is also possible over the so-called Galois rings, which are
generalizations of the ring Z/2kZ, and are described in detail in Section 3.2. Then, in the
same work, it was shown that this can be used as the basis for a perfectly secure pro-
tocol over Z/2kZ with t < n/3, in a flavor that resembles the protocol over fields from
Section 2.4.

In this section, instead of presenting the construction of Shamir secret-sharing for Galois
rings from [2], we present a more general result that shows that Shamir secret-sharing is
possible over any commutative finite ring, as long as the ring satisfies certain condition.
This result is introduced in the original work of [51]. The advantage of considering this
general result is that it illustrates the minimum requirements on the given algebraic
structure for efficient and homomorphic secret-sharing to be possible.

About theoriginalworkof [51]. We remark that, while the work of [51] introduces Shamir
secret-sharing over arbitrary finite rings (even non-commutative ones), its main contri-
bution lies in using this result as a tool to obtain information-theoretic MPC over these
rings. This includes in particular Z/2kZ, the ring of interest to this thesis. However,
for this thesis we chose to only use the construction of Shamir secret-sharing from [51],
while targeting the construction of our MPC protocol in Section 3.3 to the concrete case
of Galois rings, which ultimately lead to MPC over Z/2kZ, our ring of interest. This is
because, due to the fact that [51] assumes almost no algebraic structure on the given
ring, the protocols in [51] are conceptually complex and relatively inefficient. As an ex-
ample, the rings considered in [51] could be non-commutative (like, for example, a ring
of matrices, which is a relevant instantiation in practice), which heavily complicates their
constructions. Focusing on Galois rings allow us to simplify the exposition drastically,
and it allows us to obtain much more efficient constructions.

In summary, we only take from [51] the construction of Shamir secret-sharing for arbitrary
finite rings, adapted to the commutative case, and leave out the constructions of MPC
protocols for arbitrary finite rings in [51] with the goal of including more efficient MPC
constructions tailored to the more concrete ring Z/2kZ like the ones from the original
work [2].

3.1.1 Algebraic Preliminaries

Let R be a finite commutative ring. These are more general than fields, as these may
have non-zero zero divisors, that is, non-zero elements x ∈ R such that x · y = 0 for
some y ∈ R\ {0}.1 For example, in Z/2kZ the value 2k−1 is a non-zero zero divisor since
2k−1 · 2 ≡ 0 mod 2k .
1It can be shown that, over a finite ring, an element is either invertible or a zero-divisor. Hence, non-field
finite rings are precisely these with non-zero zero divisors.
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Given that, in general, commutative rings do not enjoy the property of fields that every
non-zero element is invertible, it is natural to ask what results from the ones studied in
Section 2.2 carry over to more general rings. It turns out that, fortunately, by restricting to
a “nice enough” subset of the ring, most of the results from the case of fields in Section 2.2
carry over to the more general setting of an arbitrary finite commutative ring. This type
of subsets is captured in the following definition.

Definition 3.1. Let A = {a1, ... , aℓ} ⊂ R. We say that A is an exceptional set if, for all
ai , aj ∈ A with ai 6= aj , it holds that ai − aj ∈ R∗. We define the Lenstra constant of R to
be the maximum size of an exceptional set in R.

Example 3.1. Let F be a field. Since any non-zero element of F is invertible, for any x , y ∈ F
with x 6= y it holds that x − y ∈ F∗, which implies that F is itself an exceptional set. In
fact, it is easy to see that if a ring R is an exceptional set then R is itself a field.

Given β1, ... , βu ∈ R, let Vanu×v (β1, ... , βu) ∈ Ru×v be the matrix given by
1 β11 β21 · · · βv−1

1

1 β12 β22 · · · βv−1
2

...
...

... . . . ...
1 β1u β2u · · · βv−1

u

 .

The following is a standard result in linear algebra.

Theorem3.1. Assume that u = v . Then the determinant of the matrix Vanu×v (β1, ... , βu) ∈
Ru×v is

∏
i<j(βi − βj).

Corollary 3.1. Let A = {a1, ... , aℓ} ⊆ R be an exceptional set. Then Vanℓ×ℓ(a1, ... , aℓ) ∈
Rℓ×ℓ is invertible.

From this we obtain the following results for polynomials over R.

Proposition 3.1. Let A = {a0, ... , ad} ⊂ R be an exceptional set. Let e0, ... , ed ∈ R. Then
there exists a unique f (X) ∈ R≤d [X] such that f (ai ) = ei for i ∈ {0, ... , d}.

Proof. Write f (X) =
∑d

i=0 ciXi , where the c0, ... , cd are unknowns. Let M =
Van(d+1)×(d+1)(a0, ... , ad). It is easy to see that f (ai ) = ei for i ∈ {0, ... , d} if and
only if

(e0, ... , ed)
⊺ = M · (c0, ... , cd)⊺.

From Corollary 3.1, M is invertible, so this system of equation has the unique solution
(c0, ... , cd)

⊺ = M−1 · (e0, ... , ed)⊺.
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Definition 3.2. Let A = {a0, ... , ad} ⊂ R be an exceptional set. Let e0, ... , ed ∈ R. We
denote by Interpolated({(ai , ei )}di=0) the unique polynomial f (X) ∈ R≤d [X] such that
f (ai ) = ei for i ∈ {0, ... , d}.

Finally, the following definition will be useful when we discuss Shamir secret-sharing in
the following section.

Definition 3.3 (Definition 2.2 over R). Let {β1, ... , βℓ} ⊆ R be an exceptional set. Given
s = (s1, ... , sℓ) ∈ Rℓ, we say that s is d-consistent if there exists f (X) ∈ R≤d [X] such that
si = f (βi ) for i = 1, ... , ℓ.

Observe that d-consistency is anR-linear property, that is, the set of d-consistent vectors
constitutes an R-submodule of Rℓ. Also, from Proposition 3.1, if ℓ ≤ d + 1 then every
vector s ∈ Rℓ is d-consistent, if ℓ = d +1 then every vector is d-consistent with a unique
polynomial, and if d + 1 < ℓ then not every vector is d-consistent.

3.1.2 Secret-Sharing and Reconstruction

Let R be a finite commutative ring, and let λ + 1 be its Lenstra constant. Let A =
{α0,α1, ... ,αλ} ⊆ R be an exceptional set, and assume that λ ≥ n.

Shamir secret-sharing is defined by sampling random polynomials of a given degree
whose evaluation at α0 is the desired secret, and letting the shares be the evaluations
at the point αi for i ∈ [n]. We describe below this method in full detail. We assume that
d + 1 ≤ n.

Definition 3.4 (Sharing Procedure). Let s ∈ R, and let A ⊆ [n] be a set with |A| = ℓ ≤ d
(ℓ could be zero, in which case A is the empty set). Let B be any set with B ⊆ [n] \ A and
|B| = d − ℓ. Let {si}i∈A ⊆ R. We define Shared(s, {si}i∈A) as follows.

1. Sample si ∈R R for i ∈ B;

2. Let f (X)← Interpolated({(α0, s)} ∪ {(αi , si )}i∈A∪B).

3. Output (f (α1), ... , f (αn)).

Now we characterize the distribution of Shared(s).

Lemma 3.1. Let s ∈ R, and let A ⊆ [n] be a set with |A| = ℓ ≤ d . Let B be any set with
B ⊆ [n] \ A and |B| = d − ℓ. Let {si}i∈A ⊆ R. Then the distribution of (s1, ... , sn) ←
Shared(s, {si}i∈A) is uniformly random over Rn, constrained to the following:

• (s1, ... , sn) is d-consistent.
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• s = f (α0) with f (X)← Interpolated({(αi , si )}ni=1).

In particular, the distribution is independent of the chosen set B.

Proof. Assume for now that ℓ < d ; we handle the case ℓ = d towards the end of the proof.
Consider the mapping (si )i∈B 7→ Interpolated({(α0, s)}∪{(αi , si )}i∈A∪B) (recall that s and
{si}i∈A ⊆ R are fixed). Observe that the output of Shared(s, {si}i∈A) is obtained by sam-
pling a random input to this function and returning its output. It is a direct consequence
of Proposition 3.1 that the mapping above is a bijection between Rd−ℓ and the set of
vectors (s1, ... , sn) ⊆ Rn satisfying the constraints from the lemma, which concludes the
proof for the case in which ℓ < d .

If ℓ = d , it follows from Proposition 3.1 that there is only one vector (s1, ... , sn) satisfying
the constraints of the lemma, and it is easy to see that this is precisely the vector output
by Shared(s, {si}i∈A).

From the lemma above we obtain the following simple but crucial theorem. In terms of
notation, if the set A in Definition 3.4 is empty then the method Shared(s, ∅) is simply
denoted by Shared(s).

Theorem 3.2 (Privacy of Shamir Secret-Sharing). Let s ∈ R. Let (s1, ... , sn) ← Shared(s).
Let D ⊆ [n] with |D| ≤ d . Then the values {si}i∈D follow the uniform distribution. In
particular, their distribution is independent of the secret s .

Proof. Without loss of generality assume that |B| = d . Then take the set B = D in the
computation of Shared(s).

Given a secret s that is secret-shared as (s1, ... , sn) ← Shared(s), we denote the vector
(s1, ... , sn) by JsKd . Furthermore, in the context of secure computation, we use the nota-
tion JsKd not only to represent the vector of shares, but also to represent the situation
in which each party Pi has the share si . This is an informal statement that will become
clear in the construction of our protocols.

We define the following procedures for reconstruction.

Definition 3.5 (Reconstruction Procedures). Let s ∈ R, and let A ⊆ [n] be a set with
|A| = ℓ ≥ d + 1. Let (si )i∈A ∈ Rℓ be a d-consistent vector. Let f (X) be the (unique, from
Proposition 3.1, since ℓ ≥ d + 1) polynomial of degree at most d such that f (αi ) = si for
i ∈ A.

• RecPolyd({si}i∈A) is defined as f (X);2

• RecSecretd({si}i∈A) is defined as f (α0);

• RecSharesd({si}i∈A) is defined as (f (α1), ... , f (αn)).
2This was already considered for the case in which ℓ = d + 1 in Definition 3.2.
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Homomorphisms. Given two shared values JxKd = (x1, ... , xn) and JyKd = (y1, ... , yn), it
is easy to see that:

• JxKd + JyKd = (x1 + y1, ... , xn + yn) are d-consistent shares of x + y . In the context
of secure computation where each party Pi has (xi , yi ), we denote by Jx + yKd ←JxKd + JyKd the protocol in which each party Pi locally adds xi + yi .

• JxKd ⋆ JyKd = (x1 · y1, ... , xn · yn) are 2d-consistent shares of x · y . In the context
of secure computation where each party Pi has (xi , yi ), we denote by Jx · yK2d ←JxKd · JyKd the protocol in which each party Pi locally multiplies xi · yi .

3.1.3 Error Detection/Correction

Let ℓ and d be non-negative integers, and let {β1, ... , βℓ} ⊆ R be an exceptional set. Let
s = (s1, ... , sℓ) ∈ Rℓ be a d-consistent vector, so there exists f (X) ∈ R≤d [X] such that
si = f (βi ) for i = 1, ... , ℓ. Let δ ∈ Rℓ be a vector with at most e non-zero entries.

Theorem 3.3. The following holds:

Error detection. Suppose that e < ℓ− d . If δ 6= 0, then s+ δ cannot be d-consistent.

Error correction. Suppose that e < (ℓ− d)/2. Let s1, s2 ∈ Rℓ be d-consistent vectors and
let δ1, δ2 ∈ Rℓ be vectors each with at most e non-zero entries. If s1 + δ1 = s2 + δ2,
then s1 = s2.

Proof. Error detection. Note that s + δ is d-consistent if and only if δ is d-consistent.
However, a vector with at least ℓ− e zero entries with d < ℓ − e , such as δ, cannot
be d-consistent, unless it is the zero vector. This is because, if this were the case,
then there would exist a polynomial f (X) ∈ R≤d [X] such that f (βi ) = 0 for at least
ℓ − e ≥ d + 1 indexes, which, from Proposition 3.1, implies that f (X) is the zero
polynomial. In particular, all the remaining entries f (αj) of the claimed vector are
zero.

Error correction. Assume that e < (ℓ− d)/2. If s1 + δ1 = s2 + δ2, then s1 − s2 = δ2 − δ1,
so δ2 − δ1 would be d-consistent. However, this vector has at most 2e non-zero
entries, so at least ℓ− 2e ≥ d +1 entries. As shown in the previous paragraph, this
cannot happen unless δ2 − δ1 = 0, which implies s1 = s2.

From the error correction part of Theorem 3.3, we see that, if e < (ℓ − d)/2, if s ∈ Rℓ

is d-consistent and δ ∈ Rℓ has at most e non-zero entries, and if c = s + δ, then s is
the only d-consistent vector that satisfies that c − s has at most e non-zero entries. As
a result, s can be recovered from c by trying all possible vectors δ′ ∈ Rℓ with at most e
non-zero entries, and checking if c− δ′ is d-consistent. When this holds, then s = c− δ′

(and δ = δ′).
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Unfortunately, for our parameters of interest, there are exponentially-many vectors δ′

having at most e non-zero entries. More efficient decoders, that is, algorithms for finding
(s, δ) from c as above, are designed in Sections 3.1.4 and 3.2.4.

Definition 3.6. Let s ∈ R, and let A = {a1, ... , aℓ} ⊆ [n] be a set. Let (sa1 , ... , saℓ) ∈ Rℓ

be a d-consistent vector. We extend Definition 3.5 to the case in which the input to the
reconstruction procedures might not be d-consistent because of a perturbation in at
most e entries as follows.

Let c = s+ δ, where δ is guaranteed to have at most e non-zero entries.

e < ℓ− d (error detection). In this case, the reconstruction procedures are defined as
follows:

• If (ca1 , ... , caℓ) is not d-consistent, then RecPolyd({ci}i∈A), RecSecretd({ci}i∈A)
and RecSharesd({ci}i∈A) all output a special symbol ⊥.

• If (ca1 , ... , caℓ) is d-consistent, then let f (X) be the unique polynomial inR≤d [X]
with f (αi ) = ci for i ∈ A. Then:

– RecPolyd({ci}i∈A) is defined as f (X)

– RecSecretd({ci}i∈A) is defined as f (α0)

– RecSharesd({ci}i∈A) is defined as (f (α1), ... , f (αn))

e < (ℓ− d)/2 (error correction). Use a decoding algorithm (see Sections 3.1.4 and 3.2.4)
to recover s from c. Let f (X) be the unique polynomial in R≤d [X] with f (αi ) = si for
i ∈ A. Then:

• RecPolyd({ci}i∈A) is defined as f (X)

• RecSecretd({ci}i∈A) is defined as f (α0)

• RecSharesd({ci}i∈A) is defined as (f (α1), ... , f (αn)).

Observe that the procedures above are not defined if ℓ− d ≤ e .

3.1.4 Adaptation of the Berlekamp-Welch Decoding Algorithm

In this section we present an adaptation of the Berlekamp-Welch decoder [79], which
solves efficiently the task of recovering s from c as above whenR is a field, to the case in
which R is an arbitrary commutative ring. This was achieved in the original work of [51],
and our presentation here is a simplification of that result, making explicit use of the
fact that our ring R is assumed to be commutative.
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Computational task. The concrete setting is the following. Assume that e < (ℓ − d)/2.
Let f (X) ∈ R≤d [X], s = (f (β1), ... , f (βℓ)), and let δ ∈ Rℓ be a vector with at most e
non-zero entries. The task is to find s from c = s+ δ.

The BW-conditions. We begin with the following definition.

Definition 3.7. We say that two polynomials p(X), q(X) ∈ R[X] satisfy the BW-conditions
if

1. deg(p) = e ;

2. deg(q) ≤ d + e ;

3. p(X) is monic;

4. For all i ∈ [ℓ], it holds that ci · p(βi ) = q(βi ).

Claim 3.1. There exists a pair p(X), q(X) ∈ R[X] that satisfies the BW-conditions from
Definition 3.7 above.

Proof. Define p(X) =
∏

δi ̸=0(X−βi ) and q(X) = f (X)p(X). Clearly deg(p) = e , deg(q) ≤ d+e
and p(X) is monic. To check the last condition, let i ∈ [ℓ]:

• If δi 6= 0 then p(βi ) = 0 and q(βi ) = f (βi )p(βi ) = 0, so ci · p(βi ) = q(βi ).

• If δi = 0 then f (βi ) = ci , so q(βi ) = f (βi )p(βi ) = ci · p(βi ).

The goal of our decoding algorithm is to find a pair p(X), q(X) that satisfies the BW-
conditions. However, this pair may not be unique. The next claim shows that any other
pair satisfying the BW-conditions is as good as the one guaranteed from the previous
claim for the purpose of recovering f (X).

Claim 3.2. Let p(X) =
∏

δi ̸=0(X − βi ) and q(X) = f (X)p(X), and suppose that p̂(X), q̂(X)
satisfy the BW-conditions. Then p̂(X) divides q̂(X) and q̂(X)/p̂(X) = f (X).

Proof. Consider the polynomial r(X) = q̂(X)p(X)− q(X)p̂(X). For every i ∈ [ℓ], it holds that

r(βi ) = q̂(βi )p(βi )− q(βi )p̂(βi ) = ci p̂(βi )p(βi )− ci (βi )p̂(βi ) = 0.

Observe that in the last equality we have used the fact that p̂(αi )p(αi ) = p(αi )p̂(αi ). Since
deg(r) ≤ d+2e < ℓ, it follows from Proposition 3.1 that r(X) is the zero polynomial, which
shows that q̂(X)p(X) = q(X)p̂(X). Given that q(X) = f (X)p(X), we have that q̂(X)p(X) =
f (X)p(X)p̂(X), which implies (q̂(X)− f (X)p̂(X)) · p(X) = 0.
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IfR was a field, then deg(a ·b) = deg(a)+deg(b) for any two polynomials a(X), b(X), which
would allow us to conclude that either q̂(X) − f (X)p̂(X) or p(X) is the zero polynomial,
and since p(X) is not zero, it must be the case that q̂(X) − f (X)p̂(X) = 0, obtaining the
desired result. However,Rmay have non-zero zero divisors, which imply that deg(a ·b) ≤
deg(a) + deg(b). In particular, there exist non-zero polynomials whose product is zero.

To prove that q̂(X) − f (X)p̂(X) = 0, we follow a different approach: we show that this
polynomial evaluates to 0 in at least d + e+1 points in an exceptional set, which implies
the desired equality in light of Proposition 3.1. To see this, consider the evaluation of this
polynomial at βi for all i such that δi = 0. Observe that there are at least ℓ−e ≥ d+e+1
such evaluation points. Since {β1, ... , βℓ} is an exceptional set, p(βi ) is invertible, so
r(βi ) = (q̂(βi )− f (βi )p̂(βi )) · p(βi ) = 0 implies that q̂(βi )− f (βi )p̂(βi ) = 0, as required. At
this point we see that q̂(X) = f (X)p̂(X), which concludes the proof of the main claim.

From Claim 3.2 above, we see that, to recover s from c, it suffices to

1. Find p(X) and q(X) that satisfy the BW-conditions from Definition 3.7, and let f (X) =
q(X)/p(X)

2. Return (f (β1), ... , f (βℓ)).

We discuss how to solve for the BW-conditions below.

Solving for the BW-conditions. To find p(X) and q(X) that satisfy the BW-conditions,
we write p(X) = Xe +

∑e−1
i=0 pi · Xi and q(X) =

∑d+e
i=0 qi · Xi for some unknowns

p0, ... , pe−1, q0, ... , qd+e . The last item in the BW-conditions can be phrased as
∑d+e

j=0 qi ·
βji −

∑e
j=0 pi · (ciβ

j
i ) = 0 for i ∈ [ℓ]. This is an overdetermined homogeneous system of

ℓ equations in d + 2e + 1 ≤ ℓ variables, and from Claim 3.1, this system has at least one
non-trivial solution. This solution can be found by using algorithms for solving linear
equations over R.

Remark 3.1. We are not aware of generic algorithms for solving linear equations over
an arbitrary finite commutative ring R, so the last step above highly depends on the
given ring. For the case in which R is a Galois ring, which is the case we will deal with
ultimately, efficient algorithms for solving systems of linear equations can be devised,
and these are discussed in Section 3.2.4.1.

Alternatively, we also discuss in Section 3.2.4.2 how to turn any decoding algorithm over
fields into a decoding algorithm over a Galois ring, and this algorithm can be used in
order to solve the decoding problem over a Galois ring instead of using the adaptation
of the Berlekamp-Welch algorithm from this section.
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3.1.5 Reconstructing Secret-Shared Values Efficiently

At different points throughout the execution of our protocol, the parties will need to re-
construct several secret-shared values. This is captured by the following functionality.

Functionality FPublicRec(d)

Receive si from each honest party Pi . {si}i∈H is guaranteed to be d-consistent.

1. Let (s1, ... , sn)← RecSharesd({si}i∈H). Send {si}i∈[n] to the adversary.

2. Depending on the value of d :
If t < n − d (error detection). If the adversary sends abort then make the honest

parties abort. Else, if the adversary sends continue, then send s with s ←
RecSecretd({si}i∈H) to the honest parties.

If t < (n − d)/2 (error correction). Compute s as above and send this value to the
honest parties. Abort signals are ignored.

Observe that the only difference between the setting of reconstruction with error detec-
tion and error correction is that in the former case the adversary is allowed to cause the
parties to abort, whereas in the latter this is not the case.

Functionality FPublicRec can be instantiated by the protocol ΠPublicRec below. This protocol
reconstructs several values simultaneously. This is an adaptation to the arbitrary-ring
setting of the corresponding protocol from [42].

Protocol ΠPublicRec(d)

Input: Secret-shared values Js0Kd , ... , JstKd .
Output: All the parties learn s0, ... , st .
Protocol: The parties proceed as follows

1. Let f (X) =
∑t

j=0 sjXj . The parties locally compute JziKd =
∑t

j=0 JsjKd αj
i for i ∈ [n].

Let us denote these shares by (zi1, ... , zin).

2. Each party Pk for k ∈ [n] sends zik to Pi , for i ∈ [n].

3. Upon receiving (zi1, ... , zin), each Pi for i ∈ [n] computes zi ← RecSecretd(zi1, ... , zin).
If this output is ⊥, the parties abort.

4. For i , j ∈ [n], Pi sends the reconstructed zi to Pj .

5. Upon receiving (z1, ... , zn), each party Pj computes f (X)← RecPolyd(z1, ... , zn).
• If the output of the call to RecPolyd above results in ⊥, then the parties abort.
• Else, let f (X) =

∑d
i=0 siXi . Pj outputs (s0, ... , sd).

Below we present the formal security proof that shows that Protocol ΠPublicRec(d) instan-
tiates FPublicRec(d). We present a complete full-fledged simulation-based proof, and we
will do so with many of the constructions that follow in this thesis. As a convention that
we will adhere to in this work, simulators are described into separate boxes, and the in-
distinguishability arguments between the real and ideal worlds is done in a “line by line”
approach where every single step of the protocol is analyzed in both worlds, arguing why
the environment cannot distinguish both executions at the given “instruction”. Finally,
given some character that denotes a value in the real world protocol, say x , we write the
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same character with a line on the top, so x in this case, to denote the corresponding
value in the ideal world.

Theorem 3.4. Protocol ΠPublicRec(d) instantiates functionality FPublicRec(d) with perfect
security against an active adversary corrupting t < n/3 parties.

Proof. We begin by defining the simulator S , who emulates virtual honest parties P i for
i ∈ H.

The simulator first obtains {sij}j∈[n] for i = 0, ... , t from FPublicRec. Let si =

RecSecretd({sij}j∈[n]) for i = 0, ... , t . Let fj(X) =
∑t

ℓ=0 sℓjXℓ for j ∈ [n], and f (X) =
∑t

ℓ=0 sℓXℓ.
Observe that for every i ∈ [n], (f1(αi ), ... , fn(αi )) is d-consistent with secret f (αi ).

1. S computes fj(αi ) =
∑t

ℓ=0 sℓjα
ℓ
i for i , j ∈ [n].

2. For every i ∈ C and k ∈ H:
• Pk sends fj(αi ) to Pi .
• Pk receives zki from Pi .

3. Depending on the value of t :
t < n − d (error detection). If there exists i ∈ C such that zki 6= fj(αi ), then send

abort to FPublicRec. Else, send continue to FPublicRec.
t < (n − d)/2 (error correction). Do nothing.

4. (If no abort was produced) every party P j for j ∈ H sends f (αj) to every corrupt
party. Let z(j)i be the value sent by Pi to P j , with i ∈ C and j ∈ H.

5. Depending on the value of t :
t < n − d (error detection). If there exists i ∈ C such that z ji 6= f (αi ), then send

abort to FPublicRec. Else, send continue to FPublicRec.
t < (n − d)/2 (error correction). Do nothing.

We argue indistinguishability between the real and ideal worlds.

Real world Ideal world
1. N/A (local computation) 1. N/A (local computation)

2. The adversary receives {zij}i∈C,j∈H from the
honest parties.

2. By definition zij = fj(αi ), so the adversary re-
ceives the exact same values {fj(αi )}i∈C,j∈H as
in the real world from the emulated honest
parties.

3. Let z ′ij be the value sent by Pj to Pi , for j ∈ C
and i ∈ H. If t < n − d , the error detection
property of RecSecretd ensures that the out-
put of RecSecretd({zij = fj(αi )}j∈H ∪ {z ′ij}j∈C)
is f (αi ) if z ′ij = zij for j ∈ C, and⊥ otherwise, in
which case the parties abort. If t < (n − d)/2,
the error correction property of RecSecretd en-
sures that the output of RecSecretd({zij}j∈H ∪
{z ′ij}j∈C) is f (αi ).

3. z ij is the value sent by Pj to Pi for j ∈ C and
i ∈ H. If t < n − d , then S instructs FPublicRec
to abort the (real) honest parties if z ij ̸= fj(αi )
for some j ∈ C, as in the real world. If t <
(n − d)/2, then emulated parties continue, as
in the real world.

From the previous step, honest parties abort in the real world if and only if the (real) honest parties in the
ideal world abort. In what follows we assume the parties do not abort.
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4. The corrupt parties receive {zi}j∈H. Also, each
honest party Pj receives {z(j)i }i∈C from the
corrupt parties.

4. zi is equal to f (αi ) for i ∈ H, so the cor-
rupt parties receive the exact same values
{f (αi )}i∈H from the emulated honest par-
ties. Each emulated honest party P j receives
{z(j)i }i∈C from the honest parties.

5. If t < n − d , the error detection prop-
erty of RecPolyd ensures that the output of
RecPolyd({z

(j)
i }i∈C ∪ {zi = f (αi )}i∈H) is f (X)

if z(j)i = f (αi ) for i ∈ C, and ⊥ otherwise, in
which case the parties abort. If t < (n − d)/2,
the error correction property of RecPolyd en-
sures that the output of RecPolyd({z

(j)
i }i∈C ∪

{zi}i∈H) is f (X).

5. If t < n − d , then S instructs FPublicRec to
abort the (real) honest parties if z(j)i ̸= f (αi )
for some j ∈ C, as in the real world. If t <
(n − d)/2, then emulated parties continue, as
in the real world.

Honest parties abort in the real world if and only if the (real) honest parties in the ideal world abort. In
what follows we assume the parties do not abort.

The honest parties output (s0, ... , st). The (real) honest parties receive the exact
same (s0, ... , st) from FPublicRec and output
these values.

Communication complexity ofΠPublicRec(d). ProtocolΠPublicRec(d) first requires all par-
ties to one share to each other party, which results in n2 ring elements communicated.
Then, once again, each party needs to send one share to each other party, leading to
other n2 ring elements of communication. In total, the communication complexity is 2n2
ring elements. However, since a total of t+1 secret-shared values are reconstructed, the
amortized cost per shared value is 2n2

1+t . For the case in which n = 3t +1 this is the same
as 6n2

n+2 ≈ 6n.

3.2 Galois Rings

In this section we introduce a particular type of commutative rings, the so-called Galois
rings, that will be useful for our ultimate task of designing MPC protocols over Z/2kZ.
The usefulness of these rings lies, essentially, in the fact that they are a generalization
of Z/2kZ, and they posses suitable properties to be able to use Shamir secret-sharing
on them. The use of these rings in the context of secure multiparty computation is first
documented in the original work of [2].

In this section we introduce Galois rings, and we study some of their properties that
are most relevant in our context. For a more in-depth introduction to Galois rings, their
structure and advanced properties, we refer the reader to [78]. Throughout this section
we let p be a prime number, and k , τ be positive integers.
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Definition 3.8. Let h(X) ∈ Z/pkZ[X] be a monic polynomial of degree τ such that h mod
p ∈ GF(p)[X] is irreducible. The Galois ring of degree τ and modulo pk , denoted by
GR(pk , τ), is defined as the quotient ring

(Z/pkZ)[X]
h(X)(Z/pkZ)[X]

.

Let h(X) =
∑τ

i=0 hiXi with hτ = 1. From its definition, GR(pk , τ) can be seen as (Z/pkZ)[ξ],
where h(ξ) = 0. Since ξτ = −

∑τ−1
i=0 hiξ

i , every polynomial in (Z/pkZ)[ξ] can be rewritten
so that its maximum power is ξτ−1. Furthermore, it can be shown that this representation
is unique. As a result, we have that

GR(pk , τ) = {c0 + c1ξ + · · ·+ cτ−1ξ
τ−1 : ci ∈ Z/pkZ}.

From this, we see that, by setting c1, ... , cτ−1 = 0, Z/pkZ is a subring of GR(pk , τ). It can
also be seen that GR(pk , τ) is isomorphic to (Z/pkZ)τ as Z/pkZ-modules. We list these
properties, in addition to some others, in the following theorem.

Theorem 3.5 (See [78]). A Galois ring has the following properties.

• GR(pk , τ) is unique up to ring isomorphisms.

• A Galois ring can be also characterized as a finite ring R such that its set of zero
divisors forms a principal ideal p1 · R for some prime number p ∈ Z, where p1
means the identity 1 added to itself p times.

• Z/pkZ is a subring of GR(pk , τ).

• GR(pk , τ) is isomorphic to (Z/pkZ)τ as Z/pkZ-modules.

• GR(p, τ) is equal to GF(pτ ).

Recall that every element in GR(pk , τ) can be seen as a polynomial over Z/pkZ of degree
at most τ−1. This representation, which we will refer to as the polynomial representation,
is particularly useful when we want to interpret GR(pk , τ) as (Z/pkZ)τ . However, another
representation that we will make extensive use of in this work is given in the following
theorem. This representation is called the p-adic representation.

Theorem3.6 (Theorem 14.8 in [78]). There exists ξ ∈ GR(pk , τ) of order pτ−1with h(ξ) = 0,
such that every element in a ∈ GR(pk , τ) can be uniquely written as a = a0 + a1p + · · ·+
ak−1p

k−1, where ai ∈ T , with T = {0, 1, ξ, ... , ξpτ−2}. Furthermore, a ∈ R∗ if and only if
a0 6= 0.

In a similar way as taking modulo ps of an element in Z/pkZ leads to an element in
Z/psZ, we can take modulo ps of elements in GR(pk , τ) to obtain elements in GR(ps , τ).
This is captured in the following definition.
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Definition 3.9 (Modular reduction in GR(pk , τ)). Let s ≤ k , and let a ∈ GR(pk , τ). We define
a mod ps to be the element of GR(ps , τ) defined as follows:

• Writing a = a0 + a1ξ + · · ·+ aτ−1ξ
τ−1 in polynomial representation,

a mod ps := (a0 mod ps) + (a1 mod ps)ξ + · · ·+ (aτ−1 mod ps)ξτ−1.

• Writing a = a0 + a1p + · · ·+ ak−1p
k−1 in p-adic representation,

a mod ps := a0 + a1p + · · ·+ as−1p
s−1.

Notice that a 7→ a mod ps is a ring homomorphism GR(pk , τ)→ GR(ps , τ).

Observe that, from the definition above and from Theorem 3.6, a ∈ GR(pk , τ)∗ if and only
if a mod p 6= 0. The following lemma is easy to see.

Lemma 3.2. The image of GR(pk , τ) under the homomorphism a 7→ a mod ps is GR(ps , τ).
In particular, the image of GR(pk , τ) under the homomorphism a 7→ a mod p is GF(pτ ).

3.2.1 Galois Ring Extensions

Definition 3.10. Let h(X) ∈ Z/pkZ be a monic polynomial such that h(X) mod p is ir-
reducible, and let τ ′ = deg(h). The quotient ring GR(pk ,τ)[X]

h(X)GR(pk ,τ)[X] is called a Galois ring
extension of GR(pk , τ) of degree τ ′.

In particular, from the definition above we see that GR(pk , τ) is itself a Galois ring ex-
tension of Z/pkZ = GR(pk , 1) of degree τ . The following theorem shows that this is no
coincidence: every Galois ring extension is itself a Galois ring.

Theorem 3.7 (Theorem 14.23 in [78]). Let h(X) be a monic polynomial such that h(X) mod p
is irreducible, and let τ ′ = deg(h). Then

GR(pk , τ)[X]
h(X)GR(pk , τ)[X]

∼= GR(pk , τ · τ ′).

3.2.2 Lenstra Constant of a Galois Ring

Now we analyze the Lenstra constant, defined in Definition 3.1, of a Galois ring. We begin
with the following example.
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Example 3.2. The Lenstra constant of Z/pkZ is p, given that, from the pigeonhole prin-
ciple, given any p + 1 different integers α1, ... ,αp+1, p must divide at least one of
{αp+1−αi}i∈[p], and invertible elements in Z/pkZ are precisely these that are not divisible
by p. In particular, the Lenstra constant of Z/2kZ is only 2. This means that the construc-
tion of Shamir secret-sharing from Section 3.1, when instantiated with R = Z/2kZ, only
allows for n = 1 (since the Lenstra constant has to be greater than n+1), which unfortu-
nately does not make any sense in the context of secure multiparty computation. This is
why Shamir secret-sharing does not directly work over Z/2kZ.

Over fields, the requirement for Shamir secret-sharing to work is that |F| > n. If the field
under consideration is too small, one can consider a field extension of suitable size. With
the theory we have developed so far we can see that the small size of F is not the real
problem that prevents Shamir secret-sharing from working over F, and instead, the real
problem lies in F having a small Lenstra constant, which is increased by taking a field
extension.

It turns out that a similar approach can be taken for Galois rings. As we just saw, the
Lenstra constant of Z/2kZ is too small for Shamir secret-sharing to work, but, by taking
a Galois ring extension GR(2k , τ) of Z/2kZ, the Lenstra constant can be increased. This
enables the construction of Shamir secret-sharing over GR(2k , τ), which ultimately en-
ables Shamir secret-sharing over Z/2kZ since this ring is a subring of GR(2k , τ). This is
shown in the following theorem.

Theorem 3.8. The Lenstra constant of GR(pk , τ) is pτ .

Proof. Recall that a ∈ GR(pk , τ) is invertible if and only if a mod p 6= 0. Hence, the Lenstra
constant of GR(pk , τ) is the same as that of GF(pτ ), which is |GF(pτ )| = pτ .

3.2.3 Efficient Computation over Galois Rings

Computing over GR(pk , τ) for k > 1 is not a very well studied computational task, at least
when compared to the case of computing over GR(pk , τ) for k = 1, which corresponds the
field extension GF(pτ ). However, in our setting, the degree of the extension τ is approxi-
mately equal to log(n), where n is the desired number of parties. In practical applications
n is not expected to be very large. For example, n = 100 is already a very large parameter
and, since secure multiparty computation is a distributed application, the overhead of
coordinating such large number of parties and the communication complexity is likely
to be a barrier in practice.

Even for n = 100, an extension of degree τ = 8 suffices. Since this degree is rela-
tively small, computation over GR(pk , τ) can be implemented by using the polynomial
representation a = a0 + a1ξ + · · · + aτ−1ξ

τ−1, using efficient algorithms for polynomial
multiplication, and using a lookup table with the values of ξi for i ≥ τ . This approach
was taken in the original work of [4], which, to the best of our knowledge, constitutes the
first implementation of Galois ring arithmetic in the context of MPC.
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Unfortunately, this approach does not scale well with τ . For a large extension degree,
more efficient algorithmsmust be devised. To the best of our knowledge, the only existing
library that addresses computation over this type of rings is the C library ZEN (zenfact.
sourceforge.net), and the multiplication method is based on Karatsuba’s algorithm.
Unfortunately, this method does not perform very well for very large τ . For example, in
the original work of [36], some experiments using the ZEN library were run, in order to
determine the feasibility of computing over these rings. The results show that, for k = 64
and τ = 46, this library can compute less than 22,000 multiplications per second on a
single core of a 2.8 GHz i7 processor, which is too small for practical secure multiparty
computation.

The above is a problem when extensions of a degree that is equal to a statistical security
parameter, which is typically above 40, are needed. This is the case for many recent works
that claim to offer concretely practical secure multiparty computation, yet neglect this
efficiency issue [22, 65, 71].

3.2.4 Error Correction over a Galois Ring

We present some additional results regarding error correction in the context where the
ring R is a Galois ring. In Section 3.1.4 we saw an algorithm to efficiently solve the task
of error correction, where a d-consistent vector s ∈ Rℓ is perturbed in at most e entries,
and the goal is to recover s, assuming that e < (ℓ−d)/2. This method works for any finite
commutative ring R, assuming that solving systems of linear equations over this ring is
possible.

First, in Section 3.2.4.1 we will show that, indeed, solving systems of linear equations
over a Galois ring can be done efficiently. This result implies that the adaptation of the
Berlekamp-Welch decoding algorithm from Section 3.1.4 works “from beginning to end”
when R is a Galois ring.

Finally, as an additional contribution, we will show in Section 3.2.4.2 that an efficient
decoding algorithm over GR(pk , τ) can be constructed from any efficient decoding algo-
rithm over GR(p, τ) = GF(pτ ). This result was shown in the original work of [2], and it is
of major significance as it implies that improvements in the task of error correction over
fields, which is a very well studied field, carry over to the setting of a Galois ring.

3.2.4.1 Solving Systems of Linear Equations over a Galois Ring

First, observe that the task of solving a system of u equations in v variables over GR(pk , τ)
can be seen as the task of inverting a GR(pk , τ)-linear map M : GR(pk , τ)v → GR(pk , τ)u .
Using the fact that for every ℓ > 0 there exists a Z/pkZ-module isomorphism ϕℓ :
GR(pk , τ)ℓ → (Z/pkZ)τℓ, we see that the task of inverting ϕ reduces to the fact of in-
verting the Z/pkZ linear function given by ϕu ◦M ◦ϕ−1

v : (Z/pkZ)v → (Z/pkZ)u . In other
words, the task of solving a system of u equations in v variables over GR(pk , τ) can be
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reduced to the task of solving a system of u · τ equations in v · τ variables over Z/pkZ
seen as the task of inverting a GR(pk , τ)-linear map M : GR(pk , τ)v → GR(pk , τ)u .

In what follows we focus on the task of solving linear equations over Z/pkZ. This was
addressed in the original work of [51]. We begin with the following simple observation:

Proposition 3.2 (Proposition 1 in [10]). Let A be anm×n integer matrix, b be anm integer
column vector, and p be a prime and k a positive integer. The system of linear equations
Ax ≡ b mod pk is feasible (in the finite ring Z/pkZ) if and only if Ax + pky = b has a
solution in Z.

Observe that the equation Ax + pky = b can be written as [ A | pkI ]( x | y )⊺ = b, so the
task of solving a linear system over Zpk is reduced to the task of solving a linear system
over Z. It has been shown in [53, 77] that such task admits a polynomial time algorithm,
which completes the analysis.

Finally, we end with a more efficient algorithm for the case in which the number of vari-
ables equal the number of equations, and the matrix defining the system of linear equa-
tions is invertible modulo p. This is captured in the proof of the following result, which
is inspired by the proof of Hensel’s lemma.

Theorem 3.9. Let A ∈ (Z/pkZ)r×r . For every 0 < e ≤ k , if A is invertible modulo pe ,
then A is invertible modulo pe+1. Furthermore, the inverse of Amodulo pe+1 is efficiently
computable from the inverse modulo pe .

Proof. Assume that A is invertible modulo pe , so there exists A′ ∈ (Z/pkZ)r×r such that
A · A′ ≡ I mod pe . Let us write A · A′ = I + p · Q for some Q ∈ (Z/pkZ)r×r . Define
P ∈ (Z/pkZ)r×r as P = −A′ ·Q . It holds then that A·P = −A·A′ ·Q , so A·P ≡ −Q mod pe ,
and in particular p · A · P ≡ −p · Q mod pe+1.

Now letA′′ ∈ (Z/pkZ)r×r be defined asA′′ = A′+p·P . We have thatA·A′′ = A·A′+p·A·P =
I+ p ·Q + p · A · P , which modulo pe+1 becomes A · A′′ ≡ I+ p ·Q − p ·Q ≡ I mod pe+1,
which shows that A is invertible modulo pe+1. We also see that the inverse of A modulo
pe+1, A′′, is efficiently computable from A′.

From this theorem we get the following corollary.

Corollary 3.2. Let A ∈ (Z/pkZ)r×r . If A is invertible modulo p, then it is invertible modulo
pk and its inverse is efficiently computable.

Unfortunately, this approach does not naturally extend to the case in which A is not
invertible. As an example, take r = 1, A = p and let y = p. Modulo p both A and y
become zero, so any x satisfies the equation Ax ≡ y mod p. However, not all solutions
mod p can be extended to mod pk since, if Ax ≡ y mod pk then x ≡ 1 mod pk−1.
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3.2.4.2 Error Correction over GR(pk, τ ) from Error Correction over GF(pτ )

Let e, ℓ, d be positive integers with e < (ℓ− d)/2.

Definition 3.11. A decoding algorithm over GR(pk , τ) takes as input c, where c = s + δ
for some d-consistent vector s ∈ GR(pk , τ)ℓ and a vector δ ∈ GR(pk , τ)ℓ with at most e
non-zero entries, and returns (s, δ).

Let (s, δ) ← Decode1(c) be a decoding algorithm over GR(p, τ) = GF(pτ ). We will
show how to obtain, by calling Decode1 k times, a decoding algorithm Decodek over
GR(pk , τ).

Algorithm Decodek

Input: c ∈ GR(pk , τ)ℓ, where c = s + δ for some d-consistent vector s ∈ GR(pk , τ)ℓ and a
vector δ ∈ GR(pk , τ)ℓ with at most e non-zero entries
Output: The vector s.

The algorithm proceeds as follows.

• Let γ0 = c. For i = 0, ... , k − 1:
1. Compute (σi , ϵi ) = Decode1(γi mod p)

2. Let γi+1 = (γi − (σi + ϵi ))/p.
a

• Output (σ, ϵ) with σ =
∑k−1

i=0 σip
i and ϵ =

∑k−1
i=0 ϵip

i .
aIt will be the case that γi − (σi + ϵi ) is divisible by p.

Theorem 3.10. Decodek is a correct decoding algorithm.

Proof. Let us write s =
∑k−1

i=0 sip
i and δ =

∑k−1
i=0 δip

i , using the p-adic representation
from Theorem 3.6. Let ci = si + δi , so c =

∑k−1
i=0 cip

i We begin with the following claim:

Claim 3.3. Algorithm Decodek satisfies the following invariant: for every i = 0, ... , k − 1:
γi =

∑k−1
j=i cjp

j−i , σi = si , and ϵi = δi .

Proof. To prove the claim we proceed by induction.

(i = 0). Clearly γ0 = c =
∑k−1

j=0 cjp
j . Also, (γ0 mod p) = c0 = s0 + δ0, so the output of

Decode1(γ0 mod p) is σ0 = s0 and ϵ0 = δ0.

(i =⇒ i + 1). Now, assume the claim holds for some i , that is, γi =
∑k−1

j=i cjp
j−i , and let

us show that the claim still holds for i +1. Since (γi mod p) = ci = si + δi , we have
that σi = si and ϵi = δi , so γi+1 = (γi − (si + δi ))/p = (

∑k−1
j=i cjp

j−i − (si + δi ))/p =

(
∑k−1

j=i+1 cjp
j−i )/p =

∑k−1
j=i+1 cjp

j−(i+1).

123



Chapter 3 Two-Thirds Honest Majority MPC over Z/2kZ

From the invariant above we see that σ =
∑k−1

i=0 sip
i and ϵ =

∑k−1
i=0 δip

i , as required.

3.2.5 Concatenating Secret-Sharing

Finally, before we describe our secure computation protocols, we describe a tool that
will be useful in Section 3.3.3 when we present a protocol for generating shares JsKt over
a Galois ring GR(2k , τ), where the secret s is guaranteed to lie in a smaller Galois ring
GR(2k , τ ′) for some τ ′|τ .

Let GR(pk , τℓ) be a Galois ring extension of GR(pk , τ) of degree ℓ, and represent elements
a ∈ GR(pk , τℓ) using the polynomial representation as a = a0+a1ξ+ · · ·+aℓ−1ξ

ℓ−1 where
ai ∈ GR(pk , τ). Let ϕ : GR(pk , τ)ℓ → GR(pk , τℓ) be the GR(pk , τ)-module isomorphism
given by (a0, ... , aℓ−1) 7→ a0 + a1ξ + · · ·+ aℓ−1ξ

ℓ−1.

Proposition 3.3. Let JsiKd = (si1, ... , sin) for i ∈ [ℓ] be a series of secret-shared values
over GR(pk , τ). Then (s1, ... , sn) are d-consistent sharings of s , where sj = ϕ

(
(sij)

ℓ
i=1

)
and

s = ϕ
(
(si )

ℓ
i=1

)
.

Proof. By assumption, there exist polynomials fi (X) ∈ (GR(pk , τ))≤d [X] for i ∈ [ℓ] such
that fi (αj) = sij for j ∈ [n] and f (α0) = si . Now, let f (X) ∈ (GR(pk , τ))≤d [X] be defined as
f (X) =

∑ℓ
i=1 fi (X) · ξi−1. For every i ∈ [ℓ] and j ∈ [n], we have the following:

f (αj) =

ℓ∑
i=1

fi (αj) · ξi−1 =

ℓ∑
i=1

sij · ξi−1 = ϕ
(
(sij)

ℓ
i=1

)
= sj ,

and similarly f (α0) = s .

From the above proposition, we see that, in words, given a series (Js1Kd , ... , JsℓKd) of
secret-shared values over GR(pk , τ), the parties can concatenate their shares and apply
ϕ to the result to obtain shares of s = ϕ(s1, ... , sℓ) over GR(pk , τℓ). This local proce-
dure is denoted by JsKd ← ϕ(Js1Kd , ... , JsℓKd). In a similar way, the parties can compute
(Js1Kd , ... , JsℓKd)← ϕ−1(JsKd).
For clarity, in some places we will make use of a superscript that explicitly denotes
the ring over which the sharing is done. For example, the local procedure from above
is sometimes denoted as JsKGR(pk ,τℓ)d ← ϕ(Js1KGR(pk ,τ)d , ... , JsℓKGR(pk ,τ)d ). Finally, since
GR(pk , τ) is naturally embedded into GR(pk , τℓ), shares over the former ring can also
be naturally regarded as shares over the latter ring.
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3.3 MPC over GR(2k, τ )

In this section we present a secure multiparty computation protocol for arithmetic cir-
cuits defined over a Galois ringR = GR(2k , τ).3 Our ultimate goal is to securely compute
an arithmetic circuit F : (Z/2kZ)IF → (Z/2kZ)OF . To achieve this, first we interpret this
circuit as an arithmetic circuit F ′ : RIF → ROF over R, for which we can obtain secure
computation protocols, and observe that F ′ |Z/2kZ= F . As a result, to compute F , the
parties can compute F ′ over R, ensuring the inputs are in Z/2kZ.

Throughout the rest of this chapter, letA = GR(2k , ρ), with ρ|τ . Let χ be such that ρ·χ = τ .
Our protocol from this section will enable secure computation of an arithmetic circuit
F ′ : RIF → ROF , while ensuring that the inputs lie in A. As a result, the arithmetic
circuit that is actually computed is F : AIF → AOF given by F = F ′ |A. This approach is
necessary since secure computation overAmay not be directly possible, simply because
of the fact that the Lenstra constant of A may not be large enough to allow for Shamir
secret-sharing. By performing computation over R, which is possible since τ will be
chosen so that Shamir secret-sharing works over R, and by enforcing inputs to lie in A,
we get secure computation of the desired circuit over A.

Assume that t < n/3. As usual, we let H, C ⊆ [n] be the set of indexes corresponding
to honest and corrupt parties, respectively. Through the rest of this section we let R =
GR(2k , τ) with 2τ ≥ n + 1. In particular, from Theorem 3.8 in Section 3.2.2, we see that
the construction of Shamir secret-sharing from Section 3.1 can be instantiated over the
ringR with n parties. Later in Section 3.3.1.1 we will strengthen this to 2τ ≥ 2n so that the
construction of hyper-invertible matrices from that section works over R.

This section is organized as follows. First, in Section 3.3.1 we show how to generate the
so-called double-sharings, which is the necessary preprocessing material to handle mul-
tiplications securely, which we show how to do in Section 3.3.2. Then, in Section 3.3.3 we
show how to get shares of random values in the subring A, which will be particularly
useful for enforcing inputs to lie in this set, as we show in Section 3.3.4. Finally, in Sec-
tion 3.3.5 we present the final secure computation protocol.

3.3.1 Double-Sharings

We begin by presenting the functionality for generating double-sharings, which is a pair
(JrKt , JrK2t) where r is uniformly random and unknown to the adversary. These are nec-
essary to process multiplications securely. This is formalized by the following function-
ality.

3The results are still true over GR(pk , d) but we focus on GR(2k , d) since we are ultimately interested in
computation modulo powers of two.
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Functionality FD.Shar
• Sample r ∈R R.

• Receive {(rj , r ′j )}j∈C from the adversary.

• Run (r1, ... , rn)← Sharet(r , {rj}j∈C) and (r ′1, ... , r
′
n)← Share2t(r , {r ′j }j∈C).

• For every j ∈ H, send (rj , r
′
j ) to Pj .

3.3.1.1 Hyper-Invertible Matrices

Now we consider hyper-invertible matrices, which constitute a necessary construction
for our protocol to preprocess double-sharings.

Definition 3.12. Let R be any commutative ring. A matrixM ∈ Ru×v is said to be hyper-
invertible if every square sub-matrix obtained by taking subsets of the rows and columns
ofM is invertible.

Example 3.3. An example of a hyper-invertible matrix is the following. Let
{α1, ... ,αv ,β1, ... , βu} ⊆ R be an exceptional set. Let A = Vanv×v (α1, ... ,αv ) and
B = Vanu×v (β1, ... , βu), and letM = BA−1 ∈ Ru×v . We claim thatM is a hyper-invertible
matrix. To see this, let R ⊆ [u] and C ⊆ [v ] with |R | = |C | = ℓ. Assume without loss of
generality that R = C = {1, ... , ℓ}.

To show that M is hyper-invertible we need to show that M[R ,C ] is invertible. Let G ∈
Rv×ℓ be defined as

G =

(
Van(v−ℓ)×v (αℓ+1, ... ,αv )

Vanℓ×v (β1, ... , βℓ)

)−1

·
(
0(v−ℓ)×ℓ

Iℓ×ℓ

)
,

and letW = A[C , ·] ·G ∈ Rℓ×ℓ. We claim that (M[R ,C ])−1 = W. To be able to prove this,
we first show a series of claims.

Claim 3.4. A[C c, ·] · G = 0(v−ℓ)×ℓ

Proof. From definition over G, we see that(
Van(v−ℓ)×v (αℓ+1, ... ,αv )

Vanℓ×v (β1, ... , βℓ)

)
· G =

(
0(v−ℓ)×ℓ

Iℓ×ℓ

)
,

and since Van(v−ℓ)×v (αℓ+1, ... ,αv ) = A[C c, ·], we obtain that A[C c, ·] · G = 0(v−ℓ)×ℓ.

Claim 3.5. B[R , ·] · G = Iℓ×ℓ
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Proof. From definition over G, we see that(
Van(v−ℓ)×v (αℓ+1, ... ,αv )

Vanℓ×v (β1, ... , βℓ)

)
· G =

(
0(v−ℓ)×ℓ

Iℓ×ℓ

)
,

and since Vanℓ×v (β1, ... , βℓ) = B[R , ·], we obtain that B[R , ·] · G = Iℓ×ℓ.

Claim 3.6. A · G =

(
W

0(v−ℓ)×ℓ

)

Proof. Making use of claim 3.4:

A · G =

(
A[C , ·]
A[C c, ·]

)
· G =

(
A[C , ·] · G
A[C c, ·] · G

)
=

(
W

0(v−ℓ)×ℓ

)

Claim 3.7. A−1[·,C ] ·W = A−1 ·
(

W
0(v−ℓ)×ℓ

)

Proof.

A−1 ·
(

W
0(v−ℓ)×ℓ

)
=
(
A−1[·,C ] | A−1[·,C c]

)
·
(

W
0(v−ℓ)×ℓ

)
= A−1[·,C ] ·W.

Now, to see the main claim that (M[R ,C ])−1 = W, we proceed as follows:

M[R ,C ] ·W = (B[R , ·] · A−1[·,C ]) ·W

= B[R , ·] · A−1 ·
(

W
0(v−ℓ)×ℓ

)
from Claim 3.7

= B[R , ·] · A−1 · A · G from Claim 3.6
= B[R , ·] · G
= Iℓ×ℓ from Claim 3.5

From now on we require 2τ ≥ 2n to allow the construction of a hyper-invertible matrix
from Example 3.3 with u = v = n. LetM ∈ Rn×n be a hyper-invertible matrix.

3.3.1.2 Generating Double-Sharings

The following protocol ΠD.Shar can be used to generated double-sharings, or more pre-
cisely, to instantiate FunctionalityFD.Shar. This is a direct adaptation of the corresponding
protocol in [42] over fields. Notice that the protocol produces a set of n − 2t double-
sharings, rather than a single one, as done in Functionality FD.Shar. The effect of this
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is that, when we present the simulation-based proof that Protocol ΠD.Shar instantiates
FD.Shar in Theorem 3.11 below, multiple calls to FD.Shar will be done by the simulator and
the honest parties.

Protocol ΠD.Shar

Output: A set of double sharings {(JriKt , JriK2t)}ni=2t+1

Protocol: The parties proceed as follows
1. Each party Pi samples si ∈R R and secret-shares it using degree-t and degree-2t
polynomials. The parties obtain JsiKt and JsiK2t , but observe that corrupt parties
may distribute shares inconsistently.

2. The parties compute locally the following shares:
Jr1KtJr2Kt
...JrnKt

 = M ·


Js1KtJs2Kt
...JsnKt

 ,


Jr ′1K2tJr ′2K2t
...Jr ′nK2t

 = M ·


Js ′1K2tJs ′2K2t
...Js ′nK2t

 .

3. For each i ∈ [2t], all the parties send their shares of JsiKt and JsiK2t to Pi .

4. Upon receiving these shares, each Pi for i = 1, ... , 2t checks that the received shar-
ings of JsiKt and JsiK2t are t and 2t-consistent, respectively. If any of the sharings is
not consistent, or if both are but the reconstructed value is not equal in both cases,
Pi broadcasts abort to all parties and halts.

5. If no party sends an abort message in the previous step, then the parties output the
double-sharings (JriKt , JriK2t) for i = 2t + 1, ... , n.

Theorem 3.11. Protocol ΠD.Shar instantiates functionality FD.Shar with perfect security
against an active adversary corrupting t < n/3 parties.

Proof. We define the simulator S below.

1. • The virtual honest parties P i sample s i ∈R R and call (s i1, ... , s in)← Sharet(s i )
and (s ′i1, ... , s

′
in)← Share2t(s i ). Then P i sends (s ij , s ′ij) to Pj for j ∈ C.

• Every simulated party P i receives a pair (s ji , s ′ji ) as their share of Js jKt and Js jK2t
from each Pj with j ∈ C.

2. Each emulated party P i computes
r1i
r2i
...
rni

 = M ·


s1i
s2i
...
sni

 ,


r ′1i
r ′2i
...
r ′ni

 = M ·


s ′1i
s ′2i
...
s ′ni

 .

3. • Every emulated party P j sends (r ij , r ′ij) to Pi for i ∈ C ∩ [2t].
• Every emulated party P i with i ∈ [2t] receives (r ij , r ′ij) from Pj for j ∈ C.

4. Every emulated P i with i ∈ [2t] checks if (r i1, ... , r in) and (r ′i1, ... , r
′
in) are t and 2t-

consistent, respectively, and that their underlying secrets are the same. If this does
not hold then P i aborts.
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5. If no abort was produced in the previous step, S computes (r i1, ... , r in) ←
RecShares((r ij)j∈H) for i ∈ {2t + 1, ... , n}. Then S sends {(r ij , r ′ij)}j∈C for i ∈
{2t + 1, ... , n} to FD.Shar.

To argue indistinguishability we proceed by describing the view of the adversary in each
of the two worlds as the computation progresses in the following diagram.

Real world Ideal world
1. From Thm. 3.2, the adversary’s shares {sij}j∈C

for i ∈ H look uniformly random.
1. From Thm. 3.2, the adversary’s shares {s ij}j∈C

for i ∈ H also look uniformly random.

2. Local operations 2. Local operations

3. The adversary gets values {rij}j∈H and {r ′ij}j∈H
for i ∈ C ∩ [2t].

3. The adversary gets values {r ij}j∈H and
{r ′ij}j∈H computed in the same way as in the
real world, for i ∈ C ∩ [2t].

4. The parties perform the check 4. The emulated parties perform the same check.

Honest parties may abort. However, since the two worlds are indistinguishable up to this point, honest
parties abort in the real world if and only if emulated honest parties abort in the ideal world, and in this
case S instructs FD.Shar to make the real honest parties abort. In what follows we assume the parties do not
abort.

5. The honest parties Pj output {(rij , r ′ij)}ni=2t+1. 5. The (real) honest parties Pj output uni-
formly random values {(r ij , r ′ij)}ni=2t+1, where
{r ij}j∈H∪{r ij}j∈C is t-consistent and {r ′ij}j∈H∪
{r ′ij}j∈C is 2t-consistent, for i = 2t + 1, ... , n,
and the two underlying secrets are uniformly
random and are the same.

To complete the proof of indistinguishability, we only need to show that the values output
by the honest parties in the real execution are indistinguishable from these output by
(real) honest parties in the ideal execution. For this, we make use of the following claims.
Below, we let I = {2t + 1, ... , n}.

Claim 3.8. Assume that the parties do not abort in the protocol execution. Let I = {2t +
1, ... , n}. Then, the values {(rij , r ′ij)}ni=2t+1 output by the honest parties Pj with j ∈ H
satisfy the following:

• For i ∈ I , {rij}j∈H is t-consistent with the values {rij}j∈C held by the adversary. Let
ri be the underlying secret.

• For i ∈ I , {r ′ij}j∈H is 2t-consistent with the values {r ′ij}j∈C held by the adversary. Let
r ′i be the underlying secret.

• For i ∈ I it holds that ri = r ′i , and ri is uniformly random.

Proof. Let A ⊆ H ∩ [2t] with |A| = |C| = t . Notice that this set exists since there are at
least 2t − t = t honest parties with indexes in [2t]. Now, using block-decomposition of
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the hyper-invertible matrixM, we see that, for every j ∈ [n]:

(rij)i∈A = M[A, C] · (sij)i∈C +M[A, Cc] · (sij)i∈Cc .

SinceM is hyper-invertible,M[A, C] ∈ Rt×t is invertible, so we can write

(sij)i∈C = M[A, C]−1 · (rij)i∈A −M[A, C]−1M[A, Cc] · (sij)i∈Cc .

The above holds similarly for the shares r ′ij/s ′ij .

Now, since the parties did not abort, we have that the check performed by the honest
parties in [2t] passes, so, for every i ∈ A, (rij)nj=1 is a t-consistent vector with secret ri ,
and (r ′ij)

n
j=1 is 2t-consistent with the same secret ri . In particular, because of the linearity

of d-consistency,
(
M[A, C]−1 · (rij)i∈A

)n
j=1

is t-consistent with secret M[A, C]−1 · (ri )i∈A,

and
(
M[A, C]−1 · (r ′ij)i∈A

)n
j=1

is 2t-consistent with the same secretM[A, C]−1 · (ri )i∈A.

Similarly, since the parties with indexes in Cc are honest, they follow the protocol specifi-
cation faithfully and therefore, for i ∈ Cc, it holds that the shares (sij)nj=1 are t-consistent
with secret si , and the shares (s ′ij)

n
j=1 are t-consistent with the same secret si . From

this, it holds that the shares
(
M[A, C]−1M[A, Cc] · (sij)i∈Cc

)n
j=1

are t-consistent with a se-

cretM[A, C]−1M[A, Cc] · (si )i∈Cc , and the shares
(
M[A, C]−1M[A, Cc] · (s ′ij)i∈Cc

)n
j=1

are 2t-
consistent with the same secretM[A, C]−1M[A, Cc] · (si )i∈Cc .

Putting together the observations above, we see that, for each i ∈ C, (sij)nj=1 is t-
consistent with the secret si = M[A, C]−1 · (ri )i∈A − M[A, C]−1M[A, Cc] · (si )i∈Cc , and
(s ′ij)

n
j=1 is 2t-consistent with the same secret si . Since, for j ∈ [n]:

(rij)i∈I = M[I, C] · (sij)i∈C +M[I, Cc] · (sij)i∈Cc ,

and similarly for r ′ij , we see that, for i ∈ I , (rij)nj=1 is t-consistent, (r ′ij)nj=1 is 2t-consistent,
and the two secrets are the same, as required by the claim.

Claim 3.9. Assume that the parties do not abort in the protocol execution. For i ∈ I , let
ri be the underlying secret of the t-consistent values (rij)

n
j=1 (which is the same as the

secret of the 2t-consistent values (r ′ij)nj=1). Then, each ri is uniformly random.

Proof. Let A ⊆ Cc with |A| = n − 2t , which exists since |Cc| = n − t ≥ n − 2t . Observe
that (ri )i∈I = M[I,Ac] · (si )i∈Ac +M[I,A] · (si )i∈A. SinceM is hyper-invertible,M[I,A] ∈
R(n−2t)×(n−2t) is invertible, which means that (ri )i∈I is in a one-to-one correspondence
with (si )i∈A. The latter values are uniformly random values since they are sampled by
honest parties according to the protocol description, so the same holds for (ri )i∈I .

From the claim above, we see that the output produced in the real execution follows
exactly the same distribution as in the ideal world, which completes the proof.
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Communication complexity of ΠD.Shar. Protocol ΠD.Shar first requires each party Pi to
send 2n ring elements to the other parties,4 which amounts to a total of 2n2 messages
sent. This is followed by the parties sending a pair of shares to 2t of the parties, which
amounts to a total of 4nt ring elements being sent. In total, we see that the protocol
communicates 2n2 + 4nt ring elements. However, since the protocol produces n − 2t
sharings, we see that the amortized communication per double-share is 2n2+4nt

n−2t ring
elements. For the case in which n = 3t +1, the expression above becomes 6n2+4n(n−1)

n+2 ≈
10n.

3.3.2 Secure Multiplication

In this section we show how to make use of the double-sharings protocol from Sec-
tion 3.3.1 to securely compute multiplications, that is, obtain JxyKt from JxKt and JyKt .
This is captured formally by the following functionality. Observe that the functionality
receives the (t-consistent) shares of the two factors from the honest parties, and based
on this computes the shares corresponding to the corrupt parties and send these to the
adversary. This is necessary for the simulation, since, although the actual corrupt par-
ties may already know their shares from previous parts of the protocol execution, the
simulator does not know these.

Functionality FMult

1. Receive (xi , yi ) from each honest party Pi .

2. Call x ← RecSecrett({xi}i∈H), (x1, ... , xn) ← RecSharest({xi}i∈H), y ←
RecSecrett({yi}i∈H) and (y1, ... , yn)← RecSharest({yi}i∈H)

3. Send {(xi , yi )}i∈C to the adversary.

4. Wait for {zi}i∈C from the adversary.

5. Run (z1, ... , zn)← Sharet(x · y , {zi}i∈C).

6. For every j ∈ H, send zj to Pj .

The protocol to instantiate the functionality FMult is described below. It makes use of the
functionality FPublicRec from Section 3.1.5.

Protocol ΠMult

Input: Secret-shared values JxKt and JyKt .
Output: Jz = x · yKt .
Functionalities: FD.Shar and FPublicRec(2t).
Protocol: The parties execute the following

1. The parties FD.Shar to get (JrKt , JrK2t);
2. The parties compute locally Jx · yK2t ← JxKt · JyKt and JaK2t ← Jx · yK2t − JrK2t
3. The parties call the functionality FPublicRec(2t) to either learn a or abort.

4. The parties compute locally and output JzKt ← JrKt + a.

4For simplicity, we also count messages from a party “to itself”.
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Theorem 3.12. Protocol ΠMult instantiates functionality FMult with perfect security in the
(FD.Shar,FPublicRec(2t))-hybrid model against an active adversary corrupting t < n/3 par-
ties.

Proof. We define the simulator S as follows.

Before interacting with the adversary the simulator receives {(xi , yi )}i∈C from FMult. Then,
the simulation of the protocol proceeds as follows:

1. S emulates the functionality FD.Shar by receiving values {(r i , r ′i )}i∈C from the adver-
sary.

2. N/A (local computation)

3. S emulates the functionality FPublicRec(2t):
• S sets ai = xi · yi − r ′i for i ∈ C, samples a ∈R R and calls (a1, ... , an) ←
Share2t(a, {ai}i∈C). Then S sends (a1, ... , an) to the adversary as the emulation
of FPublicRec(2t).

• If the adversary sets the parties to abort in the emulated FPublicRec(2t), then S
sends abort to FMult.

4. For i ∈ C let z i = ai + r i . S sends {z i}i∈C to the functionality FMult.

We argue indistinguishability.

Real world Ideal world
1. The adversary sends {(ri , r ′i )}i∈C to FD.Shar. 1. The adversary sends {(r i , r ′i )}i∈C to (the emu-

lation of) FD.Shar. These follow the same dis-
tribution since it is the first interaction of the
adversary in the protocol execution.

2. N/A (local computation) 2. N/A (local computation)

3. The adversary either sets the parties to abort
in the call to FPublicRec(2t), or all the parties
learn a = x · y − r , which is uniformly random
as r is.

3. The adversary either sets the parties to abort
(with the same probability as in the real world)
in the call to the emulated FPublicRec(2t), or all
the parties learn the uniformly random value
a.

4. The honest parties output {zi = a+ ri}i∈H. 4. The (real) honest parties output {z i}i∈H such
that {z i}i∈H ∪ {z i}i∈C is t-consistent and the
underlying secret is x · y .

To finish the proof of indistinguishability, we only need to show that the output in the
two worlds is equally distributed. This is done in the following claim.

Claim 3.10. If no abort is produced, the output {zi = a + ri}i∈H of the honest parties in
the real world is uniformly random constrained to:

• {zi}i∈H ∪ {zi = a+ ri}i∈C is t-consistent

• The underlying secret is x · y .
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Proof. {zi}ni=1 is trivially t-consistent since {ri}ni=1 is, by the properties of the FD.Shar
functionality. Furthermore, from the properties of FPublicRec(2t), if no abort is produced
then the reconstructed value a corresponds to xy − r , so the underlying secret of {zi}ni=1

is r + a = r + (xy − r) = xy .

Communication complexity ofΠMult. To conclude, we study the communication com-
plexity of the multiplication protocol. This amounts to the communication complexity
of generating one double-share with FD.Shar, and opening one secret-shared value with
FPublicRec(2t). Using the instantiations of these functionalities from Sections 3.3.1 and
3.1.5, respectively, we obtain a total communication complexity of 10n+ 6n = 16n for the
case in which n = 3t + 1.

3.3.3 Shares of Random Values

Another important functionality that we will need for our final protocol is FRand(A),
which, for a Galois ring A = GR(2k , ρ) ⊆ R, distributes random t-consistent shares to
the parties with the constraint that the underlying secret lies in A. This is formalized
below.

Functionality FRand(A)

• Sample r ∈R A.

• Receive {rj}j∈C from the adversary.

• Run (r1, ... , rn)← Sharet(r , {rj}j∈C).

• For every j ∈ H, send rj to Pj .

Notice that the functionality is similar to FD.Shar, except it does not consider shares of
degree 2t , and it produces only one shared value in one call, contrary to FD.Shar, that
produces batches of n − 2t shared values. This is just for notational convenience.

Recall that A = GR(2k , ρ), with ρ|τ , and χ is such that ρ · χ = τ . For simplicity, when
A = R (i.e. ρ = τ ), we denote FRand(A) by simply FRand. The protocol to instantiate this
functionality is presented below.

Protocol ΠRand(A)

Output: A set of sharings {JrijKt : i ∈ {2t + 1, ... , n}, j ∈ [χ]} where rij ∈R A.
Protocol: The parties proceed as follows

1. Each party Pi samples si1, ... , siχ ∈R A and secret-shares it over R using a degree-t
polynomial. The parties obtain JsijKGR(2k ,τ)t for j ∈ [χ].

2. Following Section 3.2.5, the parties locally compute JsiKGR(2k ,τχ) ←
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ϕ(Jsi1KGR(2k ,τ)t , ... JsiχKGR(2k ,τ)t ) over GR(2k , τχ), where si = ϕ(si1, ... , siχ), with
ϕ : GR(2k , τ)χ → GR(2k , τχ) the mapping defined in that section.

3. The parties compute locally the following shares:
Jr1KGR(2k ,τχ)tJr2KGR(2k ,τχ)t

...JrnKGR(2k ,τχ)t

 = M ·


Js1KGR(2k ,τχ)tJs2KGR(2k ,τχ)t

...JsnKGR(2k ,τχ)t

 .

4. For each i ∈ [2t], all the parties send their shares of JsiKGR(2k ,τχ)t to Pi .

5. Upon receiving these shares, each Pi for i ∈ [2t] checks that the received sharings
of JriKt are t-consistent and that the underlying secrets lie in ϕ(Aχ). If this does not
hold then the parties abort.

6. If no abort was produced, then the parties output the sharings
(Jri1KGR(2k ,τ)t , ... , JriχKGR(2k ,τ))← ϕ−1(JriKGR(2k ,τχ)) for i ∈ {2t + 1, ... , n}.

Theorem 3.13. Protocol ΠRand(A) instantiates functionality FMult(A) with perfect security
against an active adversary corrupting t < n/3 parties.

The full simulation-based proof of this theorem is very close to the one from Theorem 3.11,
and therefore it is omitted. The main difference lies in the fact that the check performed
is different, namely, the parties check that the shares of JriKt (over GR(2k , τξ)) are t-
consistent and that the underlying secrets lie in ϕ(Aχ).

To make the proof from Theorem 3.11 work in this setting, it must be the case that the
property being checked is “R-linear” so that it is preserved after multiplying by thematrix
M. In this case, the property is that the secret of given sharings over GR(2k , τχ) lies not
in this ring but in the subring ϕ(Aχ). It is easy to see that this property is R-linear since
ϕ is an R-module homomorphism and Aχ, isomorphic to R, is an R-module.

Communication complexity ofΠRand(A). Following an analysis similar to the one from
Section 3.3.1, the communication complexity of protocol ΠRand(A) is χn2 elements in R
plus 2tn elements in GR(2k , τχ), which correspond to 2tnχ elements inR. Since χ(n−2t)

shared values are produced, the amortized cost per shared value is χ(n2+2nt)
χ(n−2t) = n2+2nt

n−2t .
For the case in which n = 3t + 1, this becomes ≈ 5n.

Remark 3.2. If A = R, then a much simpler protocol to instantiate FRand(A) can be
devised. In this case, the parties can simply run the protocol for generating double-
sharings, modified to remove the degree-2t parts. The communication complexity would
be exactly the same as the one from the analysis above, except that the protocol would
produce n − 2t shared values instead of χ(n − 2t) for some χ > 1.
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3.3.4 Secret-Sharing Inputs

As a building block, we also require a functionality that receives an input from a given
party and distributes shares of this input to the other parties. Furthermore, as men-
tioned at the beginning of Section 3.3, our ultimate goal is to obtain a secure computa-
tion protocol over A = GR(2k , ρ) by first designing a secure computation protocol over
R = GR(2k , τ), followed by restricting this protocol so that the inputs lie in A. Given this,
our functionality for distributing shares of inputs must also guarantee that the shared
inputs, which in principle could lie in R, actually belong to A. This is formalized by the
functionality below.

Functionality FInput(A)

Let s ∈ [n] be the index of the party providing input.

• Receive (input, x) from Ps .
– If x ∈ A then store (Ps , x) in memory.
– Else send abort to the honest parties.

• On input {x i}i∈C from the adversary retrieve (Ps , x) from memory and do the fol-
lowing:
1. Run (x1, ... , xn)← Sharet(x , {x i}i∈C).
2. Send xj to each party Pj ∈ H.

For simplicity, when A = R, we denote FInput(A) by simply FInput. The functionality
FInput(A) can be instantiated by the following protocol.

Protocol ΠInput(A)

Input: Party Ps has input x ∈ A, where A is a subring of R.
Output: The parties get t-consistent shares JxKt .
Functionalities: FRand(A).
Protocol: The parties proceed as follows:

1. The parties call FRand(A) to get JrKt = (r1, ... , rn), with r ∈ A.

2. The parties send their shares of JrKt to Ps .

3. Ps , upon receiving shares (r1, ... , rn), executes r ← RecSecrett(r1, ... , rn)

4. Ps broadcasts a = x − r to all the parties.

5. Upon receiving a from the broadcast channel, the parties do the following:
• If a /∈ A, then the parties abort.
• Else, they compute JxKt = a+ JrKt .

Theorem3.14. ProtocolΠInput(A) instantiates the functionalityFInput(A) in theFRand(A)-
hybrid model with perfect security against an active adversary corrupting t < n/3 parties.

Proof. Let Ps the sender. We define a simulator S as follows. S emulates the honest
parties and also the functionality FRand(A).
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We divide the description of the simulator in the cases that Ps is honest and corrupt. If
Ps is corrupt, S emulates the steps in the protocol as below.

1. S emulates FRand(A) by sampling r ∈R A, computing (r1, ... , rn) ← Sharet(r), and
sending r j to each corrupt party Pj (including Ps ).

2. The virtual honest parties P j send their shares r j of r to Ps .

3. N/A (only Ps acts locally in this step)

4. S , who emulates the broadcast channel, receives a from Ps . If a /∈ A, then S instructs
FInput(A) to make the parties abort. Else, the simulator sets x := a + r and calls
FInput(A) on behalf of Ps on input (input, x).

5. S calls FInput(A) on input {r i + a}i∈C .

To argue indistinguishability we proceed as follows.

Real world Ideal world
1. Call to FRand(A). 1. S emulates FRand(A) as in the real world.
2. From Thm. 3.2, the adversary’s shares {rj}j∈C

look uniformly random.
2. From Thm. 3.2, the adversary’s shares {r j}j∈C

look uniformly random.
3. Ps error corrects a uniformly random r 3. Ps error corrects a uniformly random r
4. Ps sends some a to the broadcast channel 4. Ps sends some a to the broadcast channel. At

this point FInput has set x = a+ r as the input
from Ps .

5. The honest parties output the shares {rj +
a}j∈H, which are t-consistent with the secret
x = a+ r and with the shares {ri + a}i∈C held
by the corrupt parties.

5. The honest parties output shares that are
t-consistent with the secret x and with the
shares {r i + a}i∈C held by the corrupt parties.

We see that the two worlds follow the exact same distribution through all the steps.

The case in which Ps is honest is handled in a similar but simpler way, and we leave it
out of the proof.

Communication complexity ofΠInput(A). The total communication complexity of pro-
tocol ΠInput(A) amounts to one call to FRand(A), plus the parties sending shares to
Ps , so n ring elements, and then Ps sending one ring element in the broadcast chan-
nel. Using the instantiation of FRand(A) from Section 3.3.3, this leads to a total of
≈ 5n + n + BCR(1) = 6n + BCR(1) for the case in which n = 3t + 1.5 It is very im-
portant to notice the following, however. Since the input phase is only called once, at
the beginning, during the execution of a secure computation protocol, its communication
complexity, as the circuit being computed grows, becomes less relevant.

5BCR(ℓ) is defined as the communication complexity of broadcasting ℓ elements in R.
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3.3.5 Final MPC Protocol

Nowwe put together the different tools explored in previous sections to obtain a protocol
that instantiates FMPC(A) with perfect security.

Protocol ΠMPC(A)

Input: The parties have inputs in A for F .
Output: The parties learn the evaluation of F on these inputs.
Functionalities: FInput(A), FMult, FPublicRec(t)
Protocol: The parties proceed as follows

1. For each i ∈ [n] and each input x ∈ A held by Pi , the parties call FInput(A) to getJxKt .
2. • For every addition operation with inputs JxKt and JyKt , the parties locally com-

pute Jx + yKt ← JxKt + JyKt .
• For every multiplication operation with inputs JxKt and JyKt , the parties call
FMult to get JxyKt .

3. For each secret-shared output value JzKt , the parties call FPublicRec(t) to learn z .

The following theorem is a direct consequence of the previous results.

Theorem 3.15. Protocol ΠMPC(A) instantiates the functionality FMPC(A) in the
(FInput(A),FMult,FPublicRec(t))-hybrid model with perfect security against an active ad-
versary corrupting t < n/3 parties.

By taking A = Z/2kZ, we obtain the following.

Corollary 3.3. Protocol ΠMPC(Z/2kZ) instantiates the functionality FMPC(Z/2kZ) in the
(FInput(Z/2kZ),FMult,FPublicRec(t))-hybrid model with perfect security against an active
adversary corrupting t < n/3 parties.

Communication complexity of ΠMPC(A). Let IF , OF and MF be the number of input,
output and multiplication gates of the arithmetic circuit F , respectively. Putting together
the complexity analysis from each subsection above, we obtain for the case in which
n = 3t + 1 that the total communication complexity required to securely compute F is,
in terms of elements of R,

IF · (6n + BCR(1)) +MF · (16n) + OF · (6n).

The following observations are important.

• Recall that τ ≈ log(2n), so, in terms of bits, the communication complexity from
above, which is measured in elements of R = GR(2k , τ), gets multiplied by kτ =
k · log(2n). In particular, it is not linear in n.
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• Observe that this communication complexity is independent of ρ, the degree of the
Galois ring A = GR(2k , ρ). In particular, even if ρ is very small, like ρ = 1 for the
case in which A = Z/2kZ, there are no communication savings with respect to the
case in which ρ = τ .

• Some of the protocols presented in this section, specifically ΠPublicRec(d), ΠD.Shar
and ΠRand(A), operate in batches, meaning that they produce not only one but
Ω(t) outputs in one call. This is acceptable for ΠD.Shar and ΠRand(A) since these
protocols are called in the preprocessing phase and, unless the circuit has too few
input and multiplication gates, these calls can be batched as required. However,
most of the calls to ΠPublicRec(d) happen in the online phase and can only be paral-
lelized for multiplication gates of the same depth. If the circuit is too “narrow”, that
is, if there are layers with too few multiplication gates, then ΠPublicRec(d) presents
no savings in terms of amortized communication complexity.

3.4 Guaranteed Output Delivery

In this thesis we have decided to focus on the notion of security with abort to keep
the exposition of the protocols simple. This is also motivated on the fact that most of
the protocols presented in this work can be enhanced to achieve the stronger notion of
guaranteed output delivery by making use of standard techniques in the literature that
are essentially agnostic to the underlying algebraic structure over which the arithmetic
circuit is defined.

This is precisely the approach taken in the original work of [2], where Shamir secret-
sharing, plus different tools for secure multiparty computation over Z/2kZ, are intro-
duced, together with indications about how to obtain from these techniques a protocol
with guaranteed output delivery. For this part they follow the general template of [16],
where a perfectly secure protocol over fields tolerating t < n/3 active corruptions and
satisfying guaranteed output delivery is designed.

In this section we sketch how to use the techniques from [16] to endow our protocol
from Section 3.3 with the stronger property of guaranteed output delivery. The main
technique is a tool called player elimination, which aims at identifying a pair of parties
{Pi ,Pj} where at least one of them is guaranteed to be corrupt. Such pair of parties
is called a semi-corrupt pair. After this is done, the values n′ = n − 2 and t ′ = t − 1
are computed, and the parties, without the identified pair, run again an instance of the
protocol with n′ parties and threshold t ′.6 Notice that it still holds that t ′ < n′/3, which
enables the use of this protocol.

6To avoid running the protocol from scratch, potentially wasting a lot of computation, the execution is done
in segments which are checked regularly and, if a semi-corrupt pair is identified, only the given segment
is restarted. We will not consider this in this section.

138



Chapter 3 Two-Thirds Honest Majority MPC over Z/2kZ

3.4.1 Different Locations Where the Protocol can Abort

Given the general approach to guaranteed output delivery outlined above, our focus in
this section is to enhance the protocol from Section 3.3 so that a semi-corrupt pair is
identified at the places in the protocol execution where an abort can happen. To this
end, we first identify precisely these locations where abort can take place.

• Whenever any of the reconstruction protocols from Definition 3.6 in Section 3.1.3 is
called with a degree d such that (n − d)/2 ≤ t < n − d . This is the case for d = 2t ,
which is used in ΠMult and ΠD.Shar.

• In the check that the secrets belong to the subring ϕ(Aχ) performed in step 5 in
ΠRand(A).

• In the check that the two shared secrets coincide in ΠD.Shar.

• In ΠInput(A) if the broadcasted value a is not in A.

3.4.2 General Strategy to Identify Semi-Corrupt Pairs

In order to identify a semi-corrupt pair in any of the situations above, the general strategy
is the following. Suppose that the parties are instructed to abort in the protocol (by any
of the reasons stated in the previous subsection). The parties execute the following:

1. For i , j ∈ [n], letMij be the set of messages that party Pi has sent to party Pj as part
of the execution of the protocol step that led to an abort. Each party Pi broadcasts
{Mij}j∈[n]

2. Each party Pj broadcasts (complain,Pi ) if the broadcasted message M ′
ij from Pi

does not coincide the set of messages Mij that Pj received from this party. The
parties output the semi-corrupt pair {Pj0 ,Pi0}, where j0 ∈ [n] is the smallest index
of the party that sent a message of the form (complain,Pi ), and i0 is the smallest
index appearing in such messages.

3. If no message of the form (complain,Pi ) is ever broadcasted, then the parties scan
themessages {Mij}i ,j∈[n] looking for a messageMi0j0 that deviates from the protocol
specification, and output {Pi0} as a corrupt party.

Since no honest party Pi would broadcast an incorrect set {Mij}j∈[n], and no honest party
Pj would incorrectly complain about another party broadcasting a wrong set, the only way
in which a party Pj would broadcast (complain,Pi ) is if either Pi or Pj is corrupt, so the
set {Pi0 ,Pj0} produced in step 2 above is indeed a semi-corrupt pair. On the other hand,
if no complaint message was broadcasted by any party, then the broadcasted messages
{Mij}i∈C,j∈H correctly reflect the messages sent by corrupt parties to honest parties. If
these messages all follow the protocol execution, then no abort signal would have been
generated in a first place. As a result, there has to be at least one Mij that does not
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follow the protocol execution, corresponding to a corrupt party Pi . Hence, the party Pi0

produced in step 3 above is guaranteed to be corrupt.

3.4.3 Removing the Possibility of Abort from the Online Phase

Unfortunately, although the generic approach above does help in identifying a semi-
corrupt pair, it requires all parties to reveal all the messages sent so far in the protocol
execution and therefore exposes the sensitive information such as the private inputs
from the honest parties or any intermediate computation values derived from these.

Recall that the protocols ΠD.Shar and ΠRand(A) are called in a preprocessing phase be-
fore all inputs are distributed. Let us begin by identifying which of the abort locations
discussed in Section 3.4.1 contain sensitive information.

• Calling ΠPublicRec(2t):

– InΠD.Shar: this is not a problem since this happens in the preprocessing phase,
so all messages sent so far are independent of the inputs.

– In ΠMult: this is a problem since this happens in the online phase where the
inputs have been already distributed.

• In the check in ΠRand(A): this is part of the preprocessing.

• In the check in ΠD.Shar: this is also part of the preprocessing.

• In ΠInput: an abort can only be caused if the party sharing the input is corrupt, so
the parties do not even need to execute the method from Section 3.4.2 to identify
a semi-corrupt pair, they can simply flag the sending party as corrupt.

Given the above, we see that the only problematic cause of abort is in the execution of
ΠMult when opening shares of degree 2t , which is likely to involve sensitive information.
Therefore, our goal now is to transform the multiplication protocol so that no abort can
occur while executing it. This is achieved as follows.

Preprocessing phase. The parties compute the following preprocessing material:

1. The parties call ΠRand(R) to get JaKt and JbKt .
2. The parties call ΠMult to obtain JcKt from JaKt and JbKt , where c = ab.

Online phase. To obtain JxyKt from JxKt and JyKt , the parties proceed as follows
1. Let JdKt ← JxKt − JaKt and JeKt ← JyKt − JbKt . Call ΠPublicRec(t) to reconstruct

d and e .

2. Compute locally JxyKt = d JbKt + e JaKt + JcKt + de .
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Correctness of the protocol can be checked by inspection, and privacy holds from the fact
that the only opened values are d and e , which are uniformly random since a and b are.
Furthermore, what is more important for the main goal of this section is that the online
phase of this protocol only involves opening sharings of degree t instead of degree 2t ,
which falls into the error correction regime and therefore can be done without possibility
of abort.
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Chapter 4

Honest Majority MPC over Z/2kZ

The goal of this chapter is to design a statistically securemultiparty computation protocol
with abort for arithmetic circuits over Z/2kZ that tolerates t < n/2 active corruptions.
Fortunately, with the tools described in Chapter 3, this task becomes relatively simple.
In a nutshell, our approach consists of following a similar template as the protocol from
Chapter 3: use Shamir secret-sharing to distribute shares of the intermediate values,
use its additively homomorphic properties to process addition gates, and preprocess
double-shares to handle multiplication gates securely.

In this chapter we assume that n = 2t+1. As in Section 2.5, this is not for simplicity, since
the existence of more than t + 1 honest parties can lead to inconsistency of distributed
values. This can be handled by the parties executing a consistency check for values
distributed by the parties, which is described in [2]. We avoid this complication in this
thesis by simply assuming that n = 2t + 1.

Throughout the rest of this section, let R = GR(2k , τ) and A ∈ {R,Z/2kZ}.

4.1 Preliminaries

In this chapter we make use of the concepts and results on Shamir secret-sharing and
Galois rings from Section 3.1 and 3.2.

Let λ1, ... ,λn ∈ R be the scalars such that RecSecret2t({si}i∈[n]) = λ1 · s1 + · · ·+ λn · sn.

We also introduce additional results below.

Proposition 4.1. Consider a Galois ring GR(pk , u). Let f (X) ∈ GR(pk , u)[X] be a non-zero
polynomial of degree at most d . Then, the probability that f (α) = 0 for α ∈R GR(pk , u) is
at most d/pu .

Proof. Let pℓ with ℓ < k be the largest power of p simultaneously dividing all the co-
efficients of f (X). We can divide by pℓ to obtain the polynomial p−ℓf (X) ∈ GR(pk−ℓ, u).
Consider the non-zero polynomial g(X) = (p−ℓf (X)) mod p in GF(pu), which has at most
d roots. If f (α) = 0 then g(α mod p) = 0, so in particular α mod p has to be one of the at
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most d roots of g(X). Since α mod p is uniformly random over GF(pu) for α ∈R GR(pk , u),
we get that the probability of α mod p being one of these at most d roots is upper
bounded by d/pu .

Proposition 4.2. Consider a Galois ring GR(pk , u) and a Galois ring extension of it
GR(pk , uv). Let f (X) ∈ (GR(pk , uv)[X]) \ (GR(pk , u)[X]) be a polynomial of degree at most
d . Then, the probability that f (α) ∈ GR(pk , u) for α ∈R GR(pk , u) is at most d/pu .

Proof. Using the polynomial representation of GR(pk , uv) over GR(pk , u), write f (X) =∑v
i=1 ξ

i−1fi (X), where fi (X) ∈ GR(pk , u)[X]. Since f (X) /∈ GR(pk , u)[X], we have that fi0(X) 6=
0 for some i0 ∈ [v ] \ {1}. Now, given that f (α) ∈ GR(pk , u) if and only if fi (α) = 0 for
i ∈ [v ]\{1}, we would have that fi0(α) = 0. From Proposition 4.1 above, this happens with
probability at most d/pu .

4.1.1 Public Reconstruction of Secret-Shared Values

Similar to the protocol from Chapter 3, a crucial tool that we will need throughout our
protocol from this chapter is the ability for the parties to reconstruct a secret-shared
value JsKd efficiently. To this end, we introduced in Section 3.1.5 a family of functionalities
FPublicRec(d), parameterized by the degree d , that modeled the task of the parties recon-
structing the secret-shared value JsKd . The description of the functionality depended on
the value of d : if t < n − d (error detection), then the functionality allowed the adver-
sary to make the parties abort, but the correct secret s was reconstructed if an abort
did not happen; if t < (n − d)/2 (error correction), then the functionality would always
reconstruct the correct secret and would not allow the adversary to cause an abort. If
t ≥ n − d , however, then the functionality FPublicRec(d) is not defined.

In our setting the values that d will take are t and 2t . Recall that n = 2t + 1, so, for
d = t , the bound t < n − d holds but not t < (n − d)/2, so FPublicRec(t) is well defined
and in fact it can be instantiated with the protocol ΠPublicRec(t) from Section 3.1.5. This
is summarized in the following theorem, whose proof is a small variant of the one from
Theorem 3.4.

Theorem 4.1. Protocol ΠPublicRec(t) instantiates functionality FPublicRec(t) with perfect se-
curity against an active adversary corrupting t < n/2 parties.

Communication complexity of ΠPublicRec(t). An analysis similar to the one from Sec-
tion 3.1.5 shows that the communication complexity of reconstructing one shared value
is 2n2

t+1 elements in R, which, for n = 2t + 1, leads to 4n2

n+1 ≈ 4n.
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4.2 Secure Multiplication with Additive Errors

Unlike the protocol from Section 3.3.2, we will not be able to produce JxyKt from JxKt andJyKt . Instead, the parties will be able to obtain Jxy + δKt , where δ ∈ R is some value
chosen by the adversary. In this section we show how to instantiate such functionality,
which is done in two steps. First, in Section 4.2.1 we show how the parties can generate
double-sharings (JrKt , JrK2t), which is done in a simpler way than in Section 3.3.1 given
that there is less redundancy in these sharings in the t < n/2 case. Then, in Section 4.2.2 it
is shown how to use these pairs to obtain amultiplication with additive errors Jxy + δKt .
As shown at the beginning of Section 2.5.4, the additive error attack is not only a prob-
lem for correctness: for certain circuits this type of attacks enables the adversary to learn
sensitive information. Hence, to prevent an adversary from carrying out these attacks, a
verification step is carried out by the parties in which they check that all the multipli-
cations in the circuit computation are carried out correctly. This is done in Sections 4.4
and 4.5.

4.2.1 Double Sharings

We begin by presenting the functionality to generate double-sharings. This functionality
has a crucial core difference with respect to its t < n/3 counterpart from Section 3.3.1:
for our case in which n = 2t + 1, the n − t = t + 1 honest shares are not enough to
determine the secret underlying the shares JrK2t , or, in other words, the adversary can
always choose to change the shares from the corrupt parties, hence changing the value
of r .

This is captured in the functionality FD.Shar as follows. For the degree-t sharings JrKt , the
adversary is allowed to choose the shares of the corrupt parties {ri}i∈C , and then the
functionality will sample the remaining t + 1 honest shares {rj}j∈H in such a way that
{ri}i∈[n] is t-consistent with the random secret r . This, so far, is no different than the
functionality from Section 3.3.1. Now, for the degree-2t sharings JrK2t , the functionality
could allow the adversary to also choose the shares of the corrupt parties {r ′i }i∈C , and
then the functionality would sample {r ′j }j∈H so that {r ′i }i∈[n] is 2t-consistent with r , which
ultimately amounts to

∑n
i=1 λi r

′
i = r . However, since the distribution of {r ′j }j∈H would

be the exact same for any other shares {r ′′i }i∈C satisfying
∑

i∈C λi r
′′
i =

∑
i∈C λi r

′
i = r ,

the functionality does not receive {r ′i }i∈C from the adversary, but instead, it receives the
values ∆ =

∑
i∈C λi r

′
i , which is ultimately what dictates the distribution of the honest

parties’ shares {r ′j }j∈H.

Functionality FD.Shar
• Sample r ∈R R.

• Receive ({rj}j∈C ,∆) from the adversary.

• Run (r1, ... , rn)← Sharet(r , {rj}j∈C).

• Sample {r ′i }i∈H ⊆ R uniformly at random subject to
∑

i∈H λi r
′
i = r −∆.

144



Chapter 4 Honest Majority MPC over Z/2kZ

• For every j ∈ H, send (rj , r
′
j ) to Pj .

LetM = Vann×(n−t)(β1, ... , βn), where β1, ... , βn are different elements of R.

Protocol ΠD.Shar

Output: A set of double sharings {(JriKt , JriK2t)}n−t
i=1

Protocol: The parties proceed as follows
1. Each party Pi samples si ∈R F and secret-shares it using degree-t and degree-2t
polynomials. The parties obtain JsiKt and JsiK2t .

2. The parties compute locally the following shares:


Jr1KtJr2Kt
...Jrn−tKt

 = M⊺ ·


Js1KtJs2Kt
...Jsn−1KtJsnKt

 ,


Jr1K2tJr2K2t
...Jrn−tK2t

 = M⊺ ·


Js1K2tJs2K2t
...Jsn−1K2tJsnK2t

 .

3. The parties output the double sharings {(JriKt , JriK2t)}n−t
i=1 .

Theorem 4.2. Protocol ΠD.Shar instantiates functionality FD.Shar with perfect security
against an active adversary corrupting t < n/2 parties.

Proof. We define the simulator S below.

1. • For each i ∈ H and j ∈ C, the virtual honest party P i samples s ij , s ′ij ∈R R and
sends (s ij , s ′ij) to Pj .

• For each i ∈ H and j ∈ C, the virtual honest party P i receives a pair (s ji , s ′ji ). S
computes (s j1, ... , s jn)← RecSharest({s ji}i∈H) and s j ← RecSecrett({s ji}i∈H).a

2. N/A (local operations)

3. S computes the following quantities
• (r1j , r2j , ... , rn−t,j)

⊺ = M⊺ · (s1j , s2j , ... , sn−1,j , snj)
⊺ for j ∈ C,

• Γi = s i −
∑

j∈H λj s
′
ij for i ∈ C,

• ∆i =
∑

ℓ∈C M[i , ℓ] · Γℓ for i ∈ [n − t].
Then, for each i ∈ [n − t], S sends ({r ij}j∈C ,∆i ) to FD.Shar.

aThis is possible since n = 2t+1, so |H| = n− t = t+1, which means that {s ji}i∈H is t-consistent.

To argue indistinguishability we proceed by describing the view of the adversary in each
of the two worlds as the computation progresses in the following diagram.

Real world Ideal world
1. From Thm. 3.2, the shares the adversary re-

ceives {(sij , s ′ij)}j∈C for i ∈ H look uniformly
random.

1. From Thm. 3.2, the adversary’s shares
{(s ij , s ′ij)}j∈C for i ∈ H also look uniformly
random.
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2. N/A (local operations) 2. N/A (local operations)

3. Each honest party Pj with j ∈ H outputs
{(rij , r ′ij)}n−t

i=1

3. The (real) honest parties Pj output uniformly
random values {(r ij , r ′ij)}n−t

i=1 , constrained to
{r ij}j∈H ∪ {r ij}j∈C being t-consistent with a
uniformly random value r i and

∑
j∈H λj r

′
ij =

r i −∆i , for i ∈ [n − t].

To complete the proof of indistinguishability, we only need to show that the values output
by the honest parties in the real execution are indistinguishable from these output by
(real) honest parties in the ideal execution. To this end, we first define the counterparts
in the real world of some of the values used by the simulator in the ideal world. For
(i , j) ∈ ([n]× [n]) \ (C × C), let (sij , s ′ij) be the pair sent by Pi to Pj as the first part of the
real protocol execution. We define the following:

• (si1, ... , sin) ← RecSharest({sij}j∈H) and si ← RecSecrett({sij}j∈H) for i ∈ [n]. Note
that, for i ∈ H, si is the uniformly random value sampled by Pi in the protocol
execution.

• (r1j , r2j , ... , rn−t,j)
⊺ = M⊺(s1j , s2j , ... , snj)⊺ for j ∈ [n], and (r ′1j , r

′
2j , ... , r

′
n−t,j)

⊺ =
M⊺(s ′1j , s

′
2j , ... , s

′
nj)

⊺ for j ∈ H. Observe that {(rij , r ′ij)}i∈[n−t] for j ∈ H is the out-
put produced by the honest parties.

• (r1, r2, ... , rn−t)
⊺ = M⊺(s1, s2, ... , sn)⊺. Note that ri ← RecSecrett({rij}j∈[n]) for i ∈

[n − t].

• Γi = si −
∑

j∈H λjs
′
ij for i ∈ C, and ∆i =

∑
ℓ∈C M[i , ℓ] · Γℓ for i ∈ [n − t]. Notice that

∆i =
∑

ℓ∈C M[i , ℓ] · (sℓ −
∑

j∈H λjs
′
ℓj) = ri −

∑
j∈H λj r

′
ij .

To show indistinguishability, it suffices to prove the following claim.

Claim 4.1. The output {(rij , r ′ij)}i∈[n−t] for the honest parties Pj for j ∈ H in the real world
is uniformly random constrained to, for every i ∈ [n − t]:

1. ri is uniformly random

2. {rij}j∈H ∪ {rij}j∈C is t-consistent

3.
∑

j∈H λj r
′
ij = ri −∆i .

Proof. First we show that the values r1, ... , rn−t are uniformly random. To this end, ob-
serve we can write (ri )i∈[n−t] = M⊺[·, C] · (si )i∈C + M⊺[·,H] · (si )i∈H. Since M⊺[·,H] =

Van(n−t)×(n−t)((βi )i∈H)
⊺, we have from Corollary 3.1 thatM⊺[·,H] is invertible, so (ri )i∈[n−t]

is in one-to-one correspondence with (si )i∈H, which are uniformly random.

Now, in a similar way, it is easy to see that the mapping {sij}i ,j∈H 7→ {rij}i∈[n−t],j∈H given
by (rij)i∈[n−t] = M⊺[·, C] · (sij)i∈C +M⊺[·,H] · (sij)i∈H for j ∈ H is a one-to-one mapping
between the values {sij}i ,j∈H such that {sij}j∈H∪{sij}j∈C are t-consistent with the secret
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si for i ∈ H, and the values {rij}i∈[n−t],j∈H such that {rij}j∈H ∪ {rij}j∈C are t-consistent
with the secret ri for i ∈ [n − t]. Since {sij}i ,j∈H constitute random values in the domain
of this bijection, their image, {rij}i∈[n−t],j∈H, constitute random values in the codomain,
as desired.

In a similar way it is shown that {r ′ij}i∈[n−t],j∈H is uniformly random constrained to∑
j∈H λj r

′
ij = ri −∆i . In a bit more detail, define the mapping {s′ij}i ,j∈H 7→ {r′ij}i∈[n−t],j∈H

given by (r′ij)i∈[n−t] = M⊺[·, C] · (s ′ij)i∈C +M⊺[·,H] · (s′ij)i∈H for j ∈ H, where the domain is
the set of values {s′ij}i ,j∈H such that

∑
j∈H λjs′ij +Γi = si , and the codomain is the set of

values {r′ij}i∈[n−t],j∈H such that
∑

j∈H λjr′ij +∆i = ri . As before, this mapping is a bijec-
tion, so the output of the honest parties {r ′ij}i∈[n−t],j∈H, which is the image of {s ′ij}i ,j∈H
under this mapping, looks uniformly random constrained to

∑
j∈H λj r

′
ij = ri − ∆i , as

desired.

Communication complexity ofΠD.Shar. In this protocol, each party has to send 2 shares
to each other single party, which leads to 2n2 ring elements being communicated. Since
n − t = t + 1 = (n + 1)/2 double-shares are produced, the amortized communication
complexity per double-sharing is 4n2

n+1 ≈ 4n elements in R.

4.2.2 Secure Multiplication

We define a new multiplication functionality that accepts additive errors from the adver-
sary.

Functionality FMult

1. Receive (xi , yi ) from each honest party Pi .

2. Call x ← RecSecrett({xi}i∈H), (x1, ... , xn) ← RecSharest({xi}i∈H), y ←
RecSecrett({yi}i∈H) and (y1, ... , yn)← RecSharest({yi}i∈H)

3. Send {(xi , yi )}i∈C to the adversary.

4. Wait for ({zi}i∈C , δ) from the adversary.

5. Run (z1, ... , zn)← Sharet(x · y + δ, {zi}i∈C).

6. For every j ∈ H, send zj to Pj .

The protocol to instantiate the functionality FMult is described below.

Protocol ΠMult

Input: Secret-shared values JxKt and JyKt .
Functionalities: FD.Shar.
Output: Jz = x · y + δKt for some adversarially chosen value δ ∈ R.
Protocol: The parties execute the following
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1. The parties call FD.Shar to obtain (JrKt , JrK2t)
2. The parties compute locally Jx · yK2t ← JxKt · JyKt and JaK2t ← Jx · yK2t − JrK2t
3. Each party Pi sends its share ai of JaK2t to P1.

4. After receiving (a1, ... , an), P1 computes a =
∑n

i=1 λiai and sends a to all parties.

5. The parties compute locally and output JzKt ← JrKt + a.

Theorem 4.3. Protocol ΠMult instantiates functionality FMult with perfect security in the
FD.Shar-hybrid model against an active adversary corrupting t < n/2 parties.

Proof. We define the simulator S as follows.

Before interacting with the adversary the simulator receives {(xi , yi )}i∈C from FMult. Then,
the simulation of the protocol proceeds as follows:

1. S emulates FD.Shar by receiving ({r j}j∈C ,∆) from the adversary.

2. N/A (local operations)

3. S samples a ∈R R and samples {ai}i∈H uniformly at random, and let a = (−∆ +∑
i∈C λixiyi ) +

∑
i∈H λiai . Then:

• If 1 ∈ C: S sends {ai}i∈H to the corrupt party P1.
• If 1 /∈ C: The virtual honest party P1 receives {a′i}i∈C from the corrupt parties.

4. • If 1 ∈ C: Each virtual honest party P j receives a(j) from the corrupt P1.
• If 1 /∈ C: The virtual honest party P1 sends a′ =

∑
i∈C λia

′
i +
∑

j∈H λjaj to the
corrupt parties.

5. • If 1 ∈ C: S computes (a(1), ... , a(n)) ← RecSharest({a(j)}j∈H), a′ ←
RecSecrett({a(j)}j∈H) and δ = a′ − a. Then S sets z i = r i + a(i) for i ∈ C
and sends ({z i}i∈C , δ) to FMult.

• If 1 /∈ C: S computes δ =
∑

j∈C λja
′
j−(−∆+

∑
i∈C λixiyi ). Then S sets z i = r i+a′

for i ∈ C and sends ({z i}i∈C , δ) to FMult.

We argue indistinguishability.

Real world Ideal world
1. The adversary sends ({rj}j∈C ,∆) to FD.Shar. 1. The adversary sends ({r j}j∈C ,∆) to FD.Shar.

Notice that these are equally distributed as
in the real world since the adversary’s view of
both worlds is the same.

2. N/A (local computation) 2. N/A (local computation)

Now we divide the rest of the argument depending on whether P1 is corrupt or not.
Notice that the definitions of δ and a′ are different depending on this case. We begin
with the case in which this holds, that is, 1 ∈ C.

Real world Ideal world
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3. P1 receives {ai}i∈H from the honest parties.
These are defined as ai = xiyi − r ′i , where
r ′i is uniformly random subject to r = ∆ +∑

i∈H λi r
′
i , where r itself is also uniformly ran-

dom. As a result, {ai}i∈H are uniformly ran-
dom.

3. P1 receives {ai}i∈H from the virtual honest
parties, which are also uniformly random.

4. Each honest party Pj receives a(j) from the cor-
rupt P1.

4. Each virtual honest party P j receives a(j) from
the corrupt P1. Notice these values follow the
same distribution as in the real world since the
adversary’s view up to this point is indistin-
guishable in both worlds.

5. The honest parties output {zi}i∈H, where zi =
ri + a(i), with {ri}i∈H, which are distributed by
FD.Shar to the honest parties, being uniformly
random values subject to {ri}i∈H∪{rj}j∈C be-
ing t-consistent with the secret r .

5. The real honest parties output uniformly ran-
dom values {z i}i∈H subject to {z i}i∈H ∪
{z j}j∈C being t-consistent and xy + δ ←
RecSecrett({z i}i∈H).

To see the proof of indistinguishability in the case in which 1 ∈ C, we make use of the
following claim.

Claim 4.2. Assume 1 ∈ C. The output {zi}i∈H of the honest parties in the real world is
uniformly random constrained to:

• {zi}i∈H ∪{zj}j∈C is t-consistent, where, for j ∈ C, zj = rj + a(j), with (a(1), ... , a(n))←
RecSharest({a(i)}i∈H).

• x · y + δ ← RecSecrett({zi}i∈H), where δ = a′ − a, with a = (−∆ +
∑

i∈C λixiyi ) +∑
i∈H λiai and a′ ← RecSharest({a(i)}i∈H).

Proof. Recall that, for i ∈ H, zi = ri + a(i), with {ri}i∈H uniformly random values subject
to {ri}i∈H ∪{rj}j∈C being t-consistent with the secret r . As a result, from their definition,
it is easy to see that {zi}i∈H are uniformly random restricted to {zi}i∈H ∪ {zj}j∈C being
t-consistent with the secret r + a′.

Now, we have that

a = (−∆+
∑
i∈C

λixiyi ) +
∑
i∈H

λiai

= (−∆+
∑
i∈C

λixiyi ) +
∑
i∈H

λi (xiyi − r ′i )

=

n∑
i=1

λixiyi − (∆ +
∑
i∈H

r ′i ) = xy − r ,

so r + a′ = (r + a) + (a′ − a) = xy + δ, as required.

Now, it only remains to analyze the case in which P1 is not corrupt, that is, 1 /∈ C.
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Real world Ideal world
3. The corrupt parties send {a′i}i∈C to P1. 3. The corrupt parties send {a′i}i∈C to P1. Notice

that these follow the same distribution as in
the real world.

4. P1 sends a′ =
∑

i∈C λia
′
i +

∑
j∈H λjaj to the

corrupt parties.
4. P1 sends a′ =

∑
i∈C λia

′
i +

∑
j∈H λjaj to the

corrupt parties.

5. The honest parties output {zi}i∈H, where zi =
ri + a′, with {ri}i∈H, which are distributed by
FD.Shar to the honest parties, being uniformly
random values subject to {ri}i∈H∪{rj}j∈C be-
ing t-consistent with the secret r .

5. The real honest parties output uniformly ran-
dom values {z i}i∈H subject to {z i}i∈H ∪
{z j}j∈C being t-consistent and xy + δ ←
RecSecrett({z i}i∈H).

Claim 4.3. The output {zi}i∈H of the honest parties in the real world is uniformly random
constrained to:

• {zi}i∈H ∪ {zj}j∈C is t-consistent, where, for j ∈ C, zj = rj + a′, with a′ =
∑

i∈C λia
′
i +∑

j∈H λjaj .

• x · y + δ ← RecSecrett({zi}i∈H), where δ =
∑

j∈C λja
′
j − (−∆+

∑
i∈C λixiyi )

Proof. As before, recall that, for i ∈ H, zi = ri + a′, with {ri}i∈H uniformly random values
subject to {ri}i∈H ∪ {rj}j∈C being t-consistent with the secret r . As a result, from their
definition, it is easy to see that {zi}i∈H are uniformly random restricted to {zi}i∈H∪{zj}j∈C
being t-consistent with the secret r + a′.

Now, we can see that

r + a′ =

(
∆+

∑
i∈H

λi r
′
i

)
+

∑
i∈C

λia
′
i +
∑
j∈H

λjaj


=

(∑
i∈H

λi (xiyi − ai )

)
+

∆+
∑
i∈C

λia
′
i +
∑
j∈H

λjaj


=

(∑
i=1

λixiyi

)
+

∆−
∑
j∈C

λjxjyj +
∑
i∈C

λia
′
i

 = xy + δ,

so r + a′ = xy + δ, as required.

Communication complexity ofΠMult. The communication cost amounts to one call of
ΠD.Shar, which is ≈ 4n elements in R, together with each party sending one share to P1,
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and P1 sending one value back to all the parties,1 for a total of 2n ring elements more.
Hence, the communication complexity of ΠMult is ≈ 6n elements in R.

4.3 Shares of Random Values

The goal of this section is to develop a protocol to generate a sharing JsKt , where s ∈R A.
We begin with the case in which A = R, which is relatively straightforward.

We use the same functionality as in Section 3.3.3, which we restate here for the sake of
completeness.

Functionality FRand(A)

• Sample r ∈R A.

• Receive {rj}j∈C from the adversary.

• Run (r1, ... , rn)← Sharet(r , {rj}j∈C).

• For every j ∈ H, send rj to Pj .

4.3.1 A = R

Protocol ΠRand(R)

Output: A set of sharings {JriK}n−t
i=1

Protocol: The parties proceed as follows
1. Each party Pi samples si ∈R R and secret-shares it using a degree-t polynomial.
The parties obtain JsiKt .

2. The parties compute locally the following shares:


Jr1KtJr2Kt
...Jrn−tKt

 = M⊺ ·


Js1KtJs2Kt
...Jsn−1KtJsnKt

 .

3. The parties output the sharings {JriKt}n−t
i=1 .

The protocol is similar to Protocol ΠD.Shar from Section 4.2.1 to obtain double sharings
(JrKt , JrK2t), but removing the degree-2t part. The proof of the theorem below is similar
to the one from Theorem 4.2.

1This step can be optimized by asking P1 not to send a to all parties, but instead to send shares of a where
t of them are defaulted to be 0.
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Theorem4.4. ProtocolΠRand(R) instantiates functionalityFD.Shar(R)with perfect security
against an active adversary corrupting t < n/2 parties.

Communication complexity of ΠRand(R). Each party sends one share to each other
party, for a total of n2 elements communicated. Since n − t = (n + 1)/2 sharings are
produced, the cost per sharing is 2n2/(n + 1) ≈ 2n elements in R.

4.3.1.1 Public Random Values

A new functionality that we will require for the protocol from this chapter is FCoin, which
provides the parties with fresh random elements of a given setM.

Functionality FCoin(M)

When queried, sample m ∈R M and send m to all the parties.

For the case in whichM = R, this functionality can be easily instantiated via the follow-
ing simple protocol

Protocol ΠCoin(R)

Output: Fresh random value r ∈R R.
Functionalities: FRand(R) and FPublicRec(t).
Protocol: The parties execute the following

1. Parties call FRand to get JrKt .
2. Parties call FPublicRec(2t) on input JrKt to either learn r , or abort.

The following is easy to see.

Theorem 4.5. Protocol ΠCoin(R) instantiates functionality FCoin(R) with perfect security
in the (FRand(R),FPublicRec(t))-hybrid model against an active adversary corrupting t <
n/2 parties.

If the intended setM is not equal to R, protocol ΠCoin(R) can be used to instantiate
FCoin(M), assuming there is a surjective mapping Rℓ → M for some ℓ such that every
element in the codomain has an equal number of preimages. This way, to instantiate
FCoin(M), ΠCoin(R) is called ℓ times, and then the mapping above is applied to the re-
sulting random value over Rℓ.

Communication complexity of ΠCoin(R). The cost is one call to ΠRand(R) (≈ 2n ele-
ments) plus one call to ΠPublicRec(t) (≈ 4n), for a total of ≈ 6n elements in R.
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4.3.2 A = Z/2kZ

Let χ ∈ Z be such that χ ≥ κ/τ . Let ϕ and ψ be the mappings from Section 3.2.5 for
concatenating shares, satisfying ϕ : GR(2k , τ)τ → GR(2k , τ2) such that ϕ((Z/2kZ)τ ) =
GR(2k , τ), and ψ : GR(2k , τ2)χ → GR(2k , τ2χ) such that ψ(GR(2k , τ)χ) = GR(2k , τχ).

The protocol in the case in which A ⊊ R follows the same layout as the protocol from
the previous section for the case in which A = R, except that we must account for the
fact that a corrupt party Pi may secret-share JsiKt , where si /∈ A. This is handled by
performing a check that ensures that each secret this is the case.

Protocol ΠRand(Z/2kZ)

Output: A set of sharings {
q
r (iℓh)

yGR(2k ,τ)
t

}i∈[n−t]\{1},ℓ∈[τ ],h∈[χµ]\[χ] where r (iℓh) ∈R Z/2kZ.
Functionalities: FPublicRec(t), FCoin(GR(2k , τχ)).
Protocol: The parties proceed as follows

1. Each party Pi samples s(ijh) ∈R Z/2kZ for j ∈ [τ ] and h ∈ [χ · µ] and secret-
shares each of these values overR using a degree-t polynomial. The parties obtain
{
q
s(ijh)

yGR(2k ,τ)
t

}j∈[τ ],h∈[χµ].

2. The parties compute locally
q
s(ih)

yGR(2k ,τ2)

t
← ϕ(

q
s(i ,1,h)

y
t
, ... ,

q
s(i ,τ ,h)

y
t
) for i ∈

[n], h ∈ [χµ]. Notice that s(ih) ∈ ϕ((Z/2kZ)τ ) = GR(2k , τ).

3. The parties compute locally the following shares for h ∈ [χµ]:


q
r (1,h)

yGR(2k ,τ2)

tq
r (2,h)

yGR(2k ,τ2)

t...q
r (n−t,h)

yGR(2k ,τ2)

t

 = M⊺ ·



q
s(1,h)

yGR(2k ,τ2)

tq
s(2,h)

yGR(2k ,τ2)

t...q
s(n−1,h)

yGR(2k ,τ2)

tq
s(n,h)

yGR(2k ,τ2)

t


.

4. The parties compute locally

q
p(j−1)µ+i

yGR(2k ,τ2χ)

t
← ψ

(r
r (j ,(i−1)χ+1)

zGR(2k ,τ2)

t
, ... ,

r
r (j ,(i−1)χ+χ)

zGR(2k ,τ2)

t

)
for j ∈ [n − t], i ∈ [µ].

5. The parties call FCoin(GR(2k , τχ)) to get ω ∈R GR(2k , τχ).

6. The parties compute locally JzKGR(2k ,τ2χ)
t ←

∑(n−t)µ
i=1 ωi−1 JpiKGR(2k ,τ2χ)

t .

7. The parties call FGR(2
k ,τ2χ)

PublicRec (t) to reconstruct z from JzKGR(2k ,τ2χ)
t , or abort.

8. The parties compute locally (
q
r (i ,1,h)

y(GR(2k ,τ))
t

, ... ,
q
r (i ,τ ,h)

y(GR(2k ,τ))
t

) ←

ϕ−1(
q
r (i ,h)

y(GR(2k ,τ2))

t
) for i ∈ [n − t], h ∈ [χµ].

9. If z ∈ GR(2k , τχ), then the parties output the sharings
{
q
r (iℓh)

yGR(2k ,τ)
t

}i∈[n−t]\{1},ℓ∈[τ ],h∈[χµ]\[χ]. Else, the parties abort.
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Theorem 4.6. Protocol ΠRand(Z/2kZ) instantiates functionality FMult(Z/2kZ) with statis-
tical security in the FPublicRec(t)-hybrid model against an active adversary corrupting
t < n/2 parties.

Proof. Unlike previous proofs, we will not go down to the detail of individual sharings,
given the density of sub/super-indexes present in the protocol. As usual, we begin by
defining the simulator S .

1. Each virtual party P i and each corrupt party Pi samples s(ijh) ∈R Z/2kZ for j ∈ [τ ]
and h ∈ [χ · µ] and secret-shares each of these values over R using a degree-

t polynomial. The parties obtain {
r
s(ijh)

zGR(2k ,τ)
t

}i∈[n],j∈[τ ],h∈[χµ], and note that S
knows the corresponding secrets as it controls the virtual honest parties. Then S
computes the following

•
r
s(ih)

zGR(2k ,τ2)

t
← ϕ(

r
s(i ,1,h)

z
t
, ... ,

r
s(i ,τ ,h)

z
t
) for i ∈ [n], h ∈ [χµ].

• For h ∈ [χµ]:



r
r (1,h)

zGR(2k ,τ2)

tr
r (2,h)

zGR(2k ,τ2)

t...r
r (n−t,h)

zGR(2k ,τ2)

t


= M⊺ ·



r
s(1,h)

zGR(2k ,τ2)

tr
s(2,h)

zGR(2k ,τ2)

t...r
s(n−1,h)

zGR(2k ,τ2)

tr
s(n,h)

zGR(2k ,τ2)

t


.

• For j ∈ [n − t], i ∈ [µ]:r
p(j−1)µ+i

zGR(2k ,τ2χ)

t
← ψ

(r
r (j ,(i−1)χ+1)

zGR(2k ,τ2)

t
, ... ,

r
r (j ,(i−1)χ+χ)

zGR(2k ,τ2)

t

)
2. N/A (local operations)

3. N/A (local operations)

4. N/A (local operations)

5. S emulates FCoin(GR(2k , τχ)) by sampling ω ∈R GR(2k , τχ) and sending this value
to the corrupt parties.

6. N/A (local operations). The simulator computes locally JzKt ←∑(n−t)µ
i=1 ωi−1 JpiKGR(2k ,τ2χ)

t .

7. S emulates FGR(2
k ,τ2χ)

PublicRec (t) by reconstructing z from JzKGR(2k ,τ2χ)
t , or abort.

8. N/A (local operations). The simulator computes locally

(
r
r (i ,1,h)

zGR(2k ,τ)
t

, ... ,
r
r (i ,τ ,h)

zGR(2k ,τ)
t

)← ϕ−1(
r
r (i ,h)

zGR(2k ,τ2)

t
) for i ∈ [n− t], h ∈ [χµ].

9. If there exists i ∈ C, j ∈ [τ ], h ∈ [χµ] such that s(ijh) /∈ Z/2kZ, then S sends abort to
FRand(Z/2kZ). Else, for i ∈ [n − t] \ {1}, ℓ ∈ [τ ], h ∈ [χµ] \ [χ], S inputs the adversary

shares corresponding to {
r
r (iℓh)

zGR(2k ,τ)
t

}i∈[n−t]\{1},ℓ∈[τ ],h∈[χµ]\[χ] to the functionality
FRand(Z/2kZ).
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Our proof of indistinguishability in this case will contain less details, compared to the
ones provided in previous parts of this chapter. First, notice that the execution in the
ideal and real worlds are indistinguishable since the virtual honest parties execute the
exact same protocol as the real parties do. The main potential difference can occur in
the output of the two scenarios. These are the possible differences:

1. Real world. The honest parties abort if the opened value z is not in GR(2k , τχ).

Ideal world. The honest parties abort if there exists i ∈ C, j ∈ [τ ], h ∈ [χµ] such
that s(ijh) /∈ Z/2kZ

2. Assuming no abort happens:

Real world. The honest parties output shares {
q
r (iℓh)

yGR(2k ,τ)
t

}i∈[n−t]\{1},ℓ∈[τ ],h∈[χµ]\[χ].

Ideal world. The honest parties output shares {
q
r (iℓh)

yGR(2k ,τ)
t

}i∈[n−t]\{1},ℓ∈[τ ],h∈[χµ]\[χ]
where the secrets are uniformly random elements of Z/2kZ, and the corrupt
party’s shares are the same as in the real world.

In the following we show that the differences above do not yield any distinguishing ad-
vantage to the adversary. We begin with the first item.

Claim 4.4. If the honest parties do not abort in the ideal world, then they do not abort in
the real world.

Proof. Assume that the parties do not abort in the ideal world, so {s(ijh)}i∈C,j∈[τ ],h∈[χ·µ]
all belong to Z/2kZ. Since these values are indistinguishable from their equivalent ones
in the real world, we have that {s(ijh)}i∈C,j∈[τ ],h∈[χ·µ] all belong to Z/2kZ, which implies
that s(ih) = ϕ(s(i ,1,h), ... , s(i ,τ ,h)) belong to GR(2k , τ) for i ∈ C, h ∈ [χµ]. Now, since
the values r (ih) for i ∈ [n − t], h ∈ [χµ] are all GR(2k , τ)-linear combinations of the
values above, all these belong to GR(2k , τ) too. This in turn implies that p(j−1)µ+i =

ψ
(
r (j ,(i−1)χ+1), ... , r (j ,(i−1)χ+χ)

)
all belong to GR(2k , τχ) for j ∈ [n − t], i ∈ [µ].

From the above, together with the fact that ω ∈ GR(2k , τχ), we see that z =
∑(n−t)µ

i=1 ωi−1pi
also belongs to GR(2k , τχ), so the honest parties do not abort. Notice that this assumes
that the adversary does not cause an abort when invoking FPublicRec(t), which holds since
this is the case in the ideal world and the two executions up to this point are indistin-
guishable.

Claim 4.5. If the honest parties abort in the ideal world, then, with overwhelming prob-
ability in the security parameter κ, they abort in the real world.

Proof. We prove that the probability of the event in which the parties abort in the ideal
world, yet they do not abort in the real world, is at most ((n − t)µ − 1)2−κ. To see this,
assume that there exists i0 ∈ C, j0 ∈ [τ ], h0 ∈ [χµ] such that s(i0j0h0) /∈ Z/2kZ. This implies
that s(i0h0) = ϕ(s(i0,1,h0), ... , s(i0,τ ,h0)) /∈ GR(2k , τ).
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Now we show that the above implies that there exists i1 ∈ [n − t] such that r (i1h0) /∈
GR(2k , τ). Indeed, we have that (r (ih0))i∈[t] = M⊺[ [t],H ](s(ih0))i∈H +M⊺[ [t], C ](s(ih0))i∈C .
M⊺[ [t], C ] = Vant×t((βi )i∈C)

⊺ is invertible from Corollary 3.1, so we can rewrite
(s(ih0))i∈C = M⊺[ [t], C ]−1(r (ih0))i∈[t]−M⊺[ [t], C ]−1M[ [t],H ](s(ih0))i∈H. Recall that the co-
efficients ofM are in GR(2k , τ). If all the entries of (r (ih0))i∈[t] were in GR(2k , τ), then the
equation above would imply that all the entries of (s(ih0))i∈C are in GR(2k , τ), which is not
the case since this does not hold for index i = i0. Hence, there must exist i1 ∈ [t] ⊆ [n−t]
such that r (i1h0) /∈ GR(2k , τ).

Let h1 ∈ [µ] be such that (h1 − 1)χ+ 1 ≤ h0 ≤ (h1 − 1)χ+ χ, and let ℓ0 = (i1 − 1)µ+ h1.
From the above we obtain that pℓ0 = ψ

(
r (i1,(h1−1)χ+1), ... , r (i1,(h1−1)χ+χ)

)
does not belong

to GR(2k , τχ). Based on this, making use of Proposition 4.2, we see that the probability
that z =

∑(n−t)µ
i=1 ωi−1pi belongs to GR(2k , τχ) is at most (n−t)µ−1

2τχ . Since τχ ≥ κ, this
probability is at most ((n − t)µ − 1)2−κ, which is negligible in κ assuming n − t = t + 1
is polynomial in κ.

Finally, we need to see that the output distribution in both worlds is indistinguishable in
the case that no abort is produced. This is proved in the following claim.

Claim 4.6. The values {r (iℓh)}i∈[n−t]\{1},ℓ∈[τ ],h∈[χµ]\[χ] are uniformly random over Z/2kZ.

Proof. Before opening z =
∑(n−t)µ

i=1 ωi−1pi , the values {r (iℓh)}i∈[n−t],ℓ∈[τ ],h∈[χµ] look uni-
formly random to the adversary since they are in a one-to-one correspondence with the
values {r (ih)}i∈[n−t],h∈[χµ], which are also in correspondence with {s(ih)}i∈H,h∈[χµ], which
are themselves equivalent to the values {s(iℓh)}i∈H,ℓ∈[τ ],h∈[χµ], which are uniformly ran-
dom as these are sampled by honest parties.

In particular, from the above we see that p1, ... , p(n−t)µ are uniformly random. However,
after opening z , the adversary learns some additional information. Fortunately, it still
holds that p2, ... , p(n−t)µ are uniformly random, conditioned on the value of z . This is
translated into {r (iℓh)}i∈[n−t]\{1},ℓ∈[τ ],h∈[χµ]\[χ] being uniformly random conditioned on z ,
as desired.

Communication complexity ofΠRand(Z/2kZ). The cost of the protocol is the aggrega-
tion of the following:

• Each party sends χµ shares to each other party: χµn2 elements in R.

• One call to ΠCoin(GR(2k , τχ)), which involves 6n elements in GR(2k , τχ), or 6nχ el-
ements in R.

• One call to Π
GR(2k ,τ2χ)
PublicRec (t), which are 4n elements in GR(2k , τ2χ), or 4nτχ elements

in R.
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This leads to a total of≈ χµn2+6nχ+4nτχ = χn(6+µn+4τ). Since τ(n−t−1)(χµ−χ) =
τχ(n−1)(µ−1)

2 shared values are produced, the amortized cost per shared value is
2χn(6 + µn + 4τ)

τχ(n − 1)(µ− 1)
≈ 12 + 2µn + 8τ

τ(µ− 1)
≈ 2n

τ
+

8τ + 12

τ(µ− 1)
.

We will approximate this to 2n elements in R in light that the second summand ap-
proaches zero as µ approaches infinity.

4.4 Verifying Multiplication Triples with a Galois Ring Extension

The protocol from Section 4.2 allows the parties to securely obtain Jx · y + δK from JxK
and JyK, where δ is an additive error chosen by the adversary. In this section we show how
to ensure that this error is zero, or, in other words, that the triple (JxK , JyK , Jx · y + δK)
is what is known as a correct multiplication triple. This is formalized by means of the
following functionality.

Functionality FMultCheck

1. Receive (xi , yi , zi ) from each honest party Pi

2. Let x ← RecSecrett({xi}i∈H), y ← RecSecrett({yi}i∈H) and z ←
RecSecrett({zi}i∈H). Also, let (x1, ... , xn) ← RecSharest({xi}i∈H), (y1, ... , yn) ←
RecSharest({yi}i∈H) and (z1, ... , zn)← RecSharest({zi}i∈H).

3. Send ({xi}i∈C , {yi}i∈C , {zi}i∈C , δ), where δ = z − xy , to the adversary,

4. Send abort to the honest parties if δ 6= 0.

Below we let P = GR(2k , τχ), where, recall, χ is chosen so that τχ ≥ κ. Also recall that
R = GR(2k , τ). For some functionalities we write the ring over which they operate as a
superscript.

Protocol ΠMultCheck

Input: Secret shared values (JxiKt , JyiKt , JziKt) with zi = xi · yi + δi for some adversarially-
chosen value δi ∈ R, for i ∈ [m].
Output: The parties abort if δi0 6= 0 for some i0 ∈ [m].
Functionalities: FRand(R), FRand(P), FPublicRec(t), FCoin(P).
Protocol: The parties proceed as follows:

1. The parties call FRand(R) and FRand(P) to obtain JaiKRt and JbiKPt , where ai ∈R R
and bi ∈R P , for i ∈ [m].

2. For i ∈ [m], the parties compute locally:
• JaiKPt ← JaiKRt ,
• JyiKPt ← JyiKRt ,
• JziKPt ← JziKRt ,

3. The parties call FP
Mult to obtain JciKPt from JaiKPt and JbiKPt , where ci = aibi + ϵi for

some ϵi ∈ P chosen by the adversary, for i ∈ [m]

4. The parties call FCoin(P) to get ω, ρ ∈R P .
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5. For i ∈ [m], the parties compute locally:
• JdiKPt ← JxiKPt − JaiKPt
• JeiKPt ← ω JyiKPt − JbiKPt .

6. The parties call FR
PublicRec(t) and FP

PublicRec(t) to learn di and ei for i ∈ [m], or abort.

7. The parties compute locally the following
• JhiKPt ← ω JziKPt − (di JbiKPt + ei JaiKPt + JciKPt + diei ) for i ∈ [m].
• JqKPt ←∑m

i=1 ρ
i−1 JhiKPt .

8. The parties call FPublicRec(t)P to learn q.

9. If q 6= 0, the parties abort.

Theorem 4.7. Protocol ΠMultCheck instantiates functionality FMultCheck with statistical se-
curity in the (FRand(R),FRand(P),FPublicRec(t),FCoin(P))-hybrid model against an active
adversary corrupting t < n/2 parties.

Proof. The simulator is defined as follows

S receives ({xij}j∈C , {yij}j∈C , {zij}j∈C , δi ) from FMultCheck, for i ∈ [m].

1. S emulates FRand(R) and FRand(P) by receiving {aij}j∈C ⊆ R and {bij}j∈C ⊆ P from
the adversary, for i ∈ [m].

2. N/A (local computation)

3. S emulatesFP
Mult by sending {(aij , bij)}j∈C to the adversary and receiving ({c ij}j∈C , ϵi )

from the adversary, for i ∈ [m].

4. S emulates FCoin(P) by sending ω, ρ ∈R P to the adversary.

5. N/A (local computation)

6. For i ∈ [m], j ∈ [χ], S proceeds as follows:
• Compute d ij = x ij − aij and e ij = ωy ij − bij for j ∈ C.
• Sample d i ∈R R and e i ∈R P , and call (d i1, ... , d in)← ShareRt (di , {dij}j∈C) and
(e i1, ... , e in)← SharePt (e i , {e ij}j∈C).

• Emulate FR
PublicRec(t) and FP

PublicRec(t) by sending {d ij}j∈[n] and {e ij}j∈[n] to the
adversary.

7. N/A (local computation)

8. S emulates the call to FP
PublicRec(t) as follows:

• S computes hij = z ijω − (d ibij + e iaij + c ij + d ie i ) for i ∈ [m], j ∈ C, and
qj =

∑m
i=1 ρ

ihij for j ∈ C.
• S computes q =

∑m
i=1 ρ

i−1(δiω − ϵi ).
• S calls (q1, ... , qn)← SharePt (q, {qj}j∈C).
• S sends (q1, ... , qn) to the adversary as the emulation of FP

PublicRec(t).

9. S sends abort to FMultCheck if there exists i0 ∈ [m] such that ϵi0 6= 0. Also, by its
definition, FMultCheck will cause the honest parties to abort if there exists i0 ∈ [m]
such that δi0 6= 0.
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We analyze indistinguishability in the following diagram

Real world Ideal world
1. The adversary sends {aij}j∈C , {bijj}j∈C to
FRand(R) and FRand(P), for i ∈ [m]. Let
ai ∈R R and bi ∈R P be the random values
sampled by these functionalities.

1. The adversary sends {aij}j∈C , {bij}j∈C to the
emulated FRand(R) and FRand(P), for i ∈ [m].
Notice these follow the same distribution as in
the real world.

2. N/A (local computation) 2. N/A (local computation)

3. The adversary receives {(aij , bij)}j∈C from
FMult, and then it sends ({cij}j∈C , ϵi ) to FMult,
for i ∈ [m].

3. The adversary receives {(aij , bij)}j∈C from the
emulated FMult, and then it sends ({c ij}j∈C , ϵi )
to the emulated FMult, for i ∈ [m]. The distri-
bution of these values in both worlds is indis-
tinguishable.

4. The adversary receives ρ,ω ∈R P from
FCoin(P).

4. The adversary receives also random values
ρ,ω ∈R P from the emulated FCoin(P).

5. N/A (local computation) 5. N/A (local computation)

6. For i ∈ [m], the adversary holds shares dij =
xij − aij and eij = ωyij − bij for j ∈ C, and
receives t-consistent vectors (di1, ... , din) and
(ei1, ... , ein) from FR

PublicRec(t) and FP
PublicRec(t),

where the underlying secrets are di = xi − ai
and ei = yiω−bj , which are uniformly random
over R and P respectively since ai ∈R R and
bi ∈R P .

6. For i ∈ [m], the adversary t-consistent vec-
tors (d i1, ... , d in) and (e i1, ... , e in) from the
emulated FR

PublicRec(t) and FP
PublicRec(t), where

the underlying secrets are uniformly random
d i ∈R R and e i ∈R P .

7. N/A (local computation) 7. N/A (local computation)

8. Let hij = zijω − (dibij + eiaij + cij + diei )
for i ∈ [m], j ∈ C. The adversary holds
shares qj =

∑m
i=1 ρ

i−1hij for j ∈ C, and
receives t-consistent vectors (q1, ... , qn) from
FP
PublicRec(t), where the underlying secret is q =∑m
i=1 ρ

i−1hi , with hi = ωzi − (dibi + eiai + ci +
diei ). A straightforward computation shows
that q =

∑m
i=1 ρ

i−1(δiω − ϵi )

8. The shares {qj}j∈C computed by S are ob-
tained in the same way as in the real
world. The adversary receives from the
emulated FP

PublicRec(t) t-consistent vectors
(q1, ... , qn), where the underlying secret is q =∑m

i=1 ρ
i−1(δiω − ϵi ), which follows the same

distribution as in the real world.

8. The honest parties abort in this stage if and
only if q ̸= 0.

8. The (real) honest parties abort in this stage if
and only if there exists i0 ∈ [m] such that δi0 ̸=
0, or if there exists i0 ∈ [m] such that ϵi0 ̸= 0.

From the analysis above we see that, the only place where the environment could distin-
guish between the two executions is the event in which the parties abort in the last stage
of the protocol.2 To see that this happens negligibly close probabilities in both worlds,
we rely on the following pair of claims.

Claim 4.7. If the honest parties abort in the real world, then they abort in the ideal world.

2Note that the adversary can still cause aborts in earlier parts of the protocols, like in the calls to
FPublicRec(t), but these occur with equal probability in both executions. Hence, we only need to ana-
lyze the case of an abort in the last stage of the protocol.
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Proof. We prove the counter positive statement, that is, if the honest parties do not abort
in the ideal world, then they do not abort in the real world. To see this, assume that the
honest parties do not abort in the ideal world, so δi and ϵi are all zero for i ∈ [m]. As
a result, ϵi , which follow the same distribution in the real world as the values above
from the ideal world, would all be zero for i ∈ [m]. From this it can be seen that the
opened value q =

∑m
i=1 ρ

i−1(δiω− ϵi ) is equal to 0, so the parties do not abort in the real
world.

Claim 4.8. If the honest parties abort in the ideal world, then, with overwhelming prob-
ability in the security parameter κ, they abort in the real world.

Proof. Assume that the parties abort in the ideal world, which, in terms of the real world
values, means that there exists i0 ∈ [m] such that either (1) δi0 6= 0, or (2) ϵi0 6= 0. Let E0

be the event in which δi0ω − ϵi0 = 0, where the randomness is taken over the uniformly
random value ω ∈R P , We claim that Pr[E0] ≤ 2−τχ. To see this, first we notice that
regardless of whether case (1) or (2) above holds, δi0X − ϵi0 is a non-zero polynomial of
degree 1 over P , so from Proposition 4.1, we have that the probability that δi0ω − ϵi0 = 0
is upper bounded by 1/2τχ. Hence, Pr[E0] ≤ 1/2τχ.

Recall that q =
∑m

i=1 ρ
i−1(δiω − ϵi ). Let E1 be the event in which h = 0, where the

randomness is taken over the uniformly random value ρ ∈R P . We claim that Pr[E1 |
¬E0] ≤ m−1

2τχ . To see this, assume E0 does not hold, so δi0ω−ϵi0 6= 0. Then,
∑m

i=1 Xi−1(δiω−
ϵi ) would be a non-zero polynomial over P of degree at most m−1. From Proposition 4.1,
the probability that q = 0 is upper bounded by m−1

2τχ , as required.

Putting together the pieces above, we see that

Pr[E1] = Pr[E1|E0]Pr[E0] + Pr[E1|¬E0]Pr[¬E0]

≤ 1 · 1

2τχ
+

m − 1

2τχ
· 1 =

m

2τχ
.

Since τχ ≥ κ, we have that Pr[E1] ≤ m2−κ, which is negligible in κ, assuming that m is
polynomial in κ.

Communication complexity of ΠMultCheck. The communication cost is obtained by
adding the following quantities.

• m calls to ΠRand(R), which cost 2nm elements in R.

• m calls to ΠRand(P), which cost 2nm elements in P , or 2nmχ elements in R.

• m calls to ΠP
Mult, which cost 6nm elements in P , or 6nmχ elements in R.

• Two calls to ΠCoin(P), which cost 12n elements in P , or 12nχ elements in R.
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• m calls to ΠR
PublicRec(t), which cost 4nm elements in R

• m calls to ΠP
PublicRec(t), which cost 4nm elements in P , or 4nmχ elements in R.

• One call to ΠP
PublicRec(t), which costs 4n elements in P , or 4nχ elements in R.

Hence, the total is 6nm + 12nmχ+ 16nχ. Since m triples are verified, the amortized cost
per multiplication triple is 6n + 12nχ + 16nχ

m , which we approximate to 6n + 12nχ since
the last term approaches 0 as m grows. Approximating τχ ≈ κ, we would have that the
cost is ≈ 6n + 12nκ

τ

4.5 Verifying Triples Without Security Parameter Overhead

The protocol from the previous section allows the parties to check that m triples
(JxiK , JyiK , JziK) satisfy zi = xiyi . However, its communication complexity per triple
checked grows with n · κ. The goal of this section is to design a protocol with a commu-
nication complexity per triple that is independent of the statistical security parameter κ.
The ideas presented here are an adaptation of the techniques from [18], which are set in
the field setting, to the Galois ring scenario. We remark that in [57] a further refinement of
these techniques (over fields) is presented, where the overhead in communication com-
plexity is made logarithmic, rather than linear, in the number of multiplications checked.
Using a similar adaptation as the one we present below, such tools can be also made to
work in the Galois ring setting without any complication.

Recall that R = GR(2k , τ). Let L = GR(2k , τµ) such that 2τµ ≥ 2m + 1, and let P =
GR(2k , τµχ), where τµχ ≥ κ.

Let {β1, ... , β2m+1} ∈ P be an exceptional set. LetM = Van(m)×(m)(β1, ... , βm), which is in-
vertible. LetN = Van(m−2)×(m)(βm+1, ... , β2m−1) LetO = Van(2m−1)×(2m−1)(β1, ... , β2m−1)

Protocol ΠMultCheck∗

Input: Secret shared values (JxiKt , JyiKt , JziKt) with zi = xi · yi + δi for some adversarially-
chosen value δi ∈ R, for i ∈ [m].
Output: The parties abort if δi0 6= 0 for some i0 ∈ [m].
Functionalities: FRand(R), FPublicRec(t), FCoin(P).
Protocol: The parties proceed as follows:

1. The parties compute locally JxiKL ← JxiKR and JyiKL ← JyiKR for i ∈ [m], Ju0KL
...Jum−1KL

 = M−1

Jx1KL
...JxmKL
 ,

 Jv0KL
...Jvm−1KL

 = M−1

Jy1KL
...JymKL
 ,

and  Jxm+1KL
...Jx2m−1KL

 = N

 Ju0KL
...Jum−1KL

 ,

 Jym+1KL
...Jy2m−1KL

 = N

 Jv0KL
...Jvm−1KL

 .
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2. The parties call FL
Mult to obtain JziKL from JxiKL and JyiKL, where zi = xiyi + δi , for

i ∈ {m + 1, ... , 2m − 1}.

3. The parties compute locally Jw0KL
...Jw2m−2KL

 = O−1

 Jz1KL
...Jz2m−1KL

 .

The also compute JuiKP ← JuiKL and JviKP ← JviKL for i ∈ {0} ∪ [m − 1], andJwiKP ← JwiKL for i ∈ {0} ∪ [2m − 2].

4. The parties call FCoin(P) to get ρ ∈R P . Repeat if necessary until ρ /∈ {β1, ... , β2m−1}.

5. The parties compute locally
• JaKP ←∑m−1

i=0 ρi JuiKP ,
• JbKP ←∑m−1

i=0 ρi JviKP ,
• JcKP ←∑2m−2

i=0 ρi JwiKP .
6. The parties call FRand(P) to get Ja′KP , Jb′KP .
7. The parties call FP

Mult to get Jc ′KP with c ′ = a′b′ + δ′.

8. The parties call FCoin(P) to get ω ∈R P .

9. The parties compute locally JdKP ← JaKP − Ja′KP and JeKP ← ω JbKP − Jb′KP .
10. The parties call FP

PublicRec(t) to get d and e .

11. The parties compute locally JhKPt ← ω JcKPt − (d Jb′KPt + e Ja′KPt + Jc ′KPt + de)

12. The parties call FP
PublicRec(t) to get h.

13. If h 6= 0, the parties abort.

Theorem 4.8. Protocol ΠMultCheck∗ instantiates functionality FMultCheck with statistical se-
curity in the (FRand(R), FPublicRec(t), FCoin(P))-hybrid model against an active adversary
corrupting t < n/2 parties.

Proof. The simulator is defined as follows

S receives ({xij}j∈C , {yij}j∈C , {zij}j∈C , δi ) from FMultCheck, for i ∈ [m]. We define x ij = xij ,
y ij = yij , z ij = zij and δi = δi for i ∈ [m], j ∈ C

1. N/A (local computation)

2. S computes for j ∈ C: u0j
...

um−1,j

 = M−1

x1j
...

xmj

 ,

 v0j

...
vm−1,j

 = M−1

y1j
...

ymj

 ,
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and  xm+1,j

...
x2m−1,j

 = N

 u0j
...

um−1,j

 ,

 ym+1,j
...

y2m−1,j

 = N

 v0j

...
vm−1,j

 .

Then S emulates the call to FL
Mult by sending {(x ij , y ij)}j∈C to the adversary and

receiving back ({z ij}j∈C , δi ), for i ∈ {m + 1, ... , 2m − 1}.

3. N/A (local computation)

4. S emulates the call to FCoin(P) by sampling ρ ∈R P , sending this value to the ad-
versary, and repeating if necessary until ρ /∈ {β1, ... , β2m−1}.

5. N/A (local computation)

6. S emulates the call to FRand(P) by receiving {a′j}j∈C and {b
′
j}j∈C from the adversary.

7. S emulates the call to FP
Mult by sending {a

′
j}j∈C , {b

′
j}j∈C to the adversary and receiv-

ing ({c ′j}j∈C , δ
′
)

8. S emulates the call to FCoin(P) by sampling ω ∈R P and sending this value to the
adversary

9. N/A (local computation)

10. S computes  w0j

...
w2m−2,j

 = O−1

 z1j
...

z2m−1,j

 ,

and also aj =
∑m−1

i=0 ρiuij , bj =
∑m−1

i=0 ρiv ij and c j =
∑2m−2

i=0 ρiw ij for j ∈ C. Then
S sets d j = aj − a′j and e j = ω · bj − b

′
j for j ∈ C, samples d , e ∈R P , and calls

(d1, ... , dn) ← SharePt (d , {d j}j∈C) and (e1, ... , en) ← SharePt (e, {e j}j∈C). Finally, S
emulates the call to FP

PublicRec(t) by sending (d1, ... , dn) and (e1, ... , en) to the adver-
sary.

11. N/A (local computation)

12. S computes  ϵ0
...

ϵ2m−2

 = O−1

 δ1
...

δ2m−1


and h = ω

(∑2m−2
i=0 ρiϵi

)
− δ′. Then S calls (h1, ... , hn)← SharePt (h, {hj}j∈C)

13. S sends abort to FMultCheck if there exists i0 ∈ {m + 1, ... , 2m − 1} such that δi0 6= 0,
or if δ′ 6= 0. Also, by its definition, FMultCheck will cause the honest parties to abort if
there exists i0 ∈ [m] such that δi0 6= 0.

We analyze indistinguishability in the following diagram

Real world Ideal world
1. N/A (local computation) 1. N/A (local computation)

2. The adversary receives {(xij , yij)}j∈C fromFMult,
and then it sends (JzijKj∈C , δi ) for i ∈ {m +
1, ... , 2m − 1}

2. The adversary receives {(x ij , y ij)}j∈C from
FMult, which are equal to {(xij , yij)}j∈C by their
definition, and then it sends (Jz ijKj∈C , δi ) for
i ∈ {m + 1, ... , 2m − 1}, following the same
distribution as in the real world.
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3. N/A (local computation) 3. N/A (local computation)

4. The adversary learns ρ ∈R P from FRand(P),
a process that is repeated until ρ ∈
{β1, ... , β2m−1}.

4. The adversary learns ρ ∈R P from the emu-
latedFRand(P), a process that is repeated until
ρ /∈ {β1, ... , β2m−1}. The distribution of these
values in both worlds is indistinguishable.

5. N/A (local computation) 5. N/A (local computation)

6. The adversary sends
q
a′j

y
j∈C and

q
b′
j

y
j∈C to

FRand(P). Let a′, b′ ∈R P be the random val-
ues sampled by FRand(P).

6. The adversary sends
q
a′j

y
j∈C and

r
b
′
j

z
j∈C

to
the emulated FRand(P). These values follow
the same distribution as in the real world.

7. The adversary receives {a′j}j∈C and {b′
j}j∈C

from FMult, and it sends back ({c ′j }j∈C , δ
′).

7. The adversary receives {a′j}j∈C and {b′
j}j∈C

from the emulated FMult, and it sends back
({c ′j}j∈C , δ

′), which follow the same distribu-
tion as the real world given that both execu-
tions are indistinguishable up to this point.

8. The adversary learns ω ∈R P from FRand(P) 8. The adversary learns ω ∈R P from the emu-
latedFRand(P) The distribution of these values
in both worlds is the same.

9. N/A (local computation) 9. N/A (local computation)

10. The adversary gets {di}i∈[n] and {ei}i∈[n] from
FP
PublicRec(t), where di = ai−a′i and ei = ωbi−b′

i

for i ∈ [n]. Since {a′i}i∈H and {b′
i }i∈H are uni-

formly random subject to {a′i}i∈[n] and {b′
i }i∈[n]

being t-consistent with the random secrets
a′, b′ ∈R P , {di}i∈C and {ei}i∈C are uniformly
random restricted to {di}i∈[n] and {ei}i∈[n] be-
ing t-consistent with uniformly random se-
crets d , e ∈R P .

10. The adversary gets {d i}i∈[n] and {e i}i∈[n] from
the emulated FP

PublicRec(t), where {di}i∈H and
{ei}i∈H are uniformly random restricted to
{di}i∈[n] and {ei}i∈[n] being t-consistent with
uniformly random secrets d , e ∈R P . This is
the same distribution as in the real world.

11. N/A (local computation) 11. N/A (local computation)

12. The adversary gets (h1, ... , hn) from
FP
PublicRec(t), where hi is the share of Pi corre-

sponding to JhKt . It can be checked with direct
computation that h = ω

(∑2m−2
i=0 ρiϵi

)
− δ′,

where  ϵ0
...

ϵ2m−2

 = O−1

 δ1
...

δ2m−1



12. The adversary gets (h1, ... , hn) from
FP
PublicRec(t), where hj are the corrupt parties’

shares and {hi}i∈H are uniformly random
subject to {hi}i∈[n] being t-consistent with the
secret h = ω

(∑2m−2
i=0 ρiϵi

)
− δ

′, which is the
exact same distribution as in the real world.

13. The honest parties abort in this stage if and
only if h ̸= 0

13. The (real) honest parties abort in this stage if
and only if there exists i0 ∈ [2m− 1] such that
δi0 ̸= 0, or if δ′ ̸= 0.

Given the above, the only place where the environment could distinguish between the
real and ideal worlds is the event in which the parties abort in the last stage of the
protocol. To see that this event happens negligibly close probabilities in both worlds, we
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rely on the following two claims, which are analogous to the ones found in the proof of
Theorem 4.7.

Claim 4.9. If the honest parties abort in the real world, then they abort in the ideal world.

Proof. We prove the counter positive statement, that is, if the honest parties do not abort
in the ideal world, then they do not abort in the real world. To see this, assume that the
honest parties do not abort in the ideal world, so δi for i ∈ [2m−1] and δ′ are all zero. As
a result, the values from the real world δi for i ∈ [2m − 1] and δ, which follow the same
distribution as the values above from the ideal world, would all be zero. From this it can
be seen that ϵi = 0 for i ∈ {0} ∪ [2m − 2], so the opened value h = ω

(∑2m−2
i=0 ρiϵi

)
− δ′

is equal to 0. Hence, the honest parties do not abort in the real world.

Claim 4.10. If the honest parties abort in the ideal world, then, with overwhelming prob-
ability in the security parameter κ, they abort in the real world.

Proof. Assume that the parties abort in the ideal world, which means that either (1) there
exists i0 ∈ [m] such that δi0 6= 0, or (2) δ′ 6= 0. In terms of the values from the real
execution that follow the same distribution as the values above, this can be phrased as
either (1) there exists i0 ∈ ∪[2m− 1] such that δi0 6= 0, which happens if and only if there
exists j0 ∈ {0}∪ [2m−1] such that ϵj0 6= 0, or (2) δ′ 6= 0. First, notice that if (2) holds, but (1)
does not, then the final opened value by the parties in the real execution is h = −δ′ 6= 0,
so the parties abort. Hence, it remains to analyze the case in which (1) holds.

Let E0 be the event in which
∑2m−2

i=0 ρiϵi = 0, where the randomness is taken over the
uniformly random value ρ ∈R P , We claim that Pr[E0] ≤ 2−τχ. Since (1) holds,

∑2m−2
i=0 Xiϵi

is a non-zero polynomial of degree at most m − 2 over P , so from Proposition 4.1, we
have that the probability that

∑m−2
i=0 ρiϵi = 0 is upper bounded by (2m − 2)/2τχ. Hence,

Pr[E0] ≤ (2m − 2)/2τχ.

Let E1 be the event in which h = ω
(∑2m−2

i=0 ρiϵi

)
−δ′ is equal to 0, where the randomness

is taken over the uniformly random value ω ∈R P . We claim that Pr[E1 | ¬E0] ≤ 1
2τχ . To

see this, assume E0 does not hold, so
∑2m−2

i=0 ρiϵi 6= 0. Then, X
(∑2m−2

i=0 ρiϵi

)
− δ′ would

be a non-zero polynomial over P of degree 1. From Proposition 4.1, the probability that
h = 0 is upper bounded by 1

2τχ , as required.

Putting together the pieces above, we see that

Pr[E1] = Pr[E1|E0]Pr[E0] + Pr[E1|¬E0]Pr[¬E0]

≤ 1 · 2m − 2

2τχ
+

1

2τχ
· 1 =

2m − 1

2τχ
.

Since τχ ≥ κ, we have that Pr[E1] ≤ (2m− 1)2−κ, which is negligible in κ, assuming that
m is polynomial in κ.
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Communication complexity ofΠMultCheck∗. We sum the following quantities

• m− 1 calls to ΠL
Mult, which involve (m− 1)6n elements in L, or (m− 1)6nµ elements

in R.

• One call to ΠCoin(P), which costs 6n elements in P , or 6nµχ elements in R.

• One call to ΠRand(P), which costs 2n elements in P , or 2nµχ elements in R.

• One call to ΠP
Mult, which costs 6n elements in P , or 6nµχ elements in R.

• One call to ΠCoin(P), which costs 6n elements in P , or 6nµχ elements in R.

• Two calls to ΠP
PublicRec, which costs 8n elements in P , or 8nµχ elements in R.

• One more call to ΠPublicRec(P), which costs 4n elements in P , or 4nµχ elements in
R.

This gives a total of (m − 1)6nµ + 32nµχ, which, divided by the amount m of triples
checked, leads to ≈ 6nµ + 32nµχ

m . We remove the second term since this approaches
0 as m grows. Furthermore, we approximate τµ ≈ log(2m + 1), so the above becomes
≈ 6n log(2m+1)

τ elements inR. In particular, the communication complexity is independent
of the security parameter κ, as desired.

4.6 Secret-Sharing Inputs

The final building block needed for our MPC protocol is a functionality that enables par-
ties to provide inputs, while ensuring these lie in the ring Z/2kZ. This functionality,
together with the protocol instantiating it, are essentially the same as in Section 3.3.4 for
the setting in which t < n/3.

Functionality FInput(Z/2kZ)

Let s ∈ [n] be the index of the party providing input.

• Receive (input, x) from Ps .
– If x ∈ Z/2kZ then store (Ps , x) in memory.
– Else send abort to the honest parties.

• On input {x i}i∈C from the adversary retrieve (Ps , x) from memory and do the fol-
lowing:
1. Run (x1, ... , xn)← Sharet(x , {x i}i∈C).
2. Send xj to each party Pj ∈ H.

The functionality FInput(Z/2kZ) can be instantiated by the following protocol, which
makes use of the FRand(Z/2kZ) functionality from Section 4.3.
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Protocol ΠInput(Z/2kZ)

Input: Party Ps has input x ∈ Z/2kZ
Output: The parties get t-consistent shares JxKt .
Functionalities: FRand(Z/2kZ).
Protocol: The parties proceed as follows:

1. The parties call FRand(Z/2kZ) to get JrKt = (r1, ... , rn), with r ∈ Z/2kZ.

2. The parties send their shares of JrKt to Ps .

3. Ps , upon receiving shares (r1, ... , rn), executes r ← RecSecrett(r1, ... , rn).a

4. Ps broadcasts a = x − r to all the parties.

5. Upon receiving a from the broadcast channel, the parties do the following:
• If a /∈ A, then the parties abort.
• Else, they compute JxKt = a+ JrKt .

aThe only difference with respect to the protocol from Section 3.3.4 is that, in that protocol, the
adversary cannot cause an abort in this step, which is not the case here.

The following theorem is proven in a similar way as Theorem 3.14, by simply adapting its
proof from t < n/3 to the case t < n/2.

Theorem 4.9. Protocol ΠInput(Z/2kZ) instantiates the functionality FInput(Z/2kZ) in the
FRand(Z/2kZ)-hybrid model with perfect security against an active adversary corrupting
t < n/2 parties.

Communication complexity of ΠInput(Z/2kZ). The cost amounts to one call to
ΠRand(Z/2kZ), which are ≈ 2n elements in R, and each party sending one element
to the sender, which adds n elements. Then there is one call to the broadcast channel,
for a total of ≈ 3n + BCR(1) elements in R.

4.7 Final MPC Protocol

Finally, we put together all the pieces from the previous sections to instantiate
FMPC(Z/2kZ). The protocol is identical to the one from Section 3.3.5, except that in our
case we must account for the fact that multiplications may be computed incorrectly, so
the functionality FMultCheck must be called to ensure this is not the case.

As in Chapter 3, our ultimate goal is to securely compute an arithmetic circuit F :
(Z/2kZ)IF → (Z/2kZ)OF . For this, first we consider the same circuit as an arithmetic
circuit over R, namely F ′ : RIF → ROF . By restricting inputs to be in Z/2kZ, we obtain a
secure computation protocol for F .
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Protocol ΠMPC(Z/2kZ)

Input: The parties have inputs in Z/2kZ for F .
Output: The parties learn the evaluation of F on these inputs.
Functionalities: FInput(Z/2kZ), FMult, FMultCheck, FPublicRec(t)
Protocol: The parties proceed as follows

1. For each i ∈ [n] and each input x ∈ A held by Pi , the parties call FInput(A) to getJxKt .
2. • For every addition operation with inputs JxKt and JyKt , the parties locally com-

pute Jx + yKt ← JxKt + JyKt .
• For every multiplication operation with inputs JxKt and JyKt , the parties call
FMult to get JxyKt .

3. For every multiplication gate in the circuit with inputs (JaKt , JbKt) and output JcKt ,
the parties call FMultCheck to ensure that c = ab.

4. For each secret-shared output value JzKt , and if the parties did not abort in the
previous verification stage, the parties call FPublicRec(t) to learn z .

The following theorem is a direct consequence of the previous results.

Theorem 4.10. Protocol ΠMPC(Z/2kZ) instantiates the functionality FMPC(Z/2kZ) in the
(FInput(Z/2kZ),FMult,FMultCheck,FPublicRec(t))-hybrid model with perfect3 security against
an active adversary corrupting t < n/2 parties.

Communication complexity of ΠMPC(A). Let IF , OF and MF be the number of input,
output and multiplication gates of the arithmetic circuit F , respectively. Putting together
the complexity analysis from each subsection above, we obtain that the total communi-
cation complexity required to securely compute F is, in terms of elements of R,

IF · (3n + BCR(1)) +MF · (6n + 6n log(2MF + 1)) + OF · (4n),

plus some terms that depend linearly on n and κ, and are independent of IF ,MF or OF .
Finally, the observations regarding communication complexity at the end of Section 3.3.5
are also relevant in this section.

3Failure probability, or, in other words, statistical security, appears directly in the instantiations of FCheckMult
from Sections 4.4 and 4.5, and also in the instantiation of FRand(Z/2kZ) from Section 4.3, which is needed
to instantiate FInput(Z/2kZ).
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Chapter 5

MPC over Z/2kZ for a Small Number of
Parties

In Chapters 3 and 4 we presented actively secure protocols for securely computing any
arithmetic circuit over Z/2kZ, assuming the adversary corrupts t parties with t < n/3
and t < n/2 respectively. Furthermore, these protocols achieved strong security guar-
antees, namely information-theoretic security, where no assumptions on the hardness
of different computational problems are made. In this chapter we explore protocols
over Z/2kZ for the concrete cases where t = 1, n = 4, which falls within the bound
t < n/3, and t = 1, n = 3, which falls within t < n/2. The motivation for this is that, even
though one could use the protocols from Chapters 3 and 4 to obtain concrete protocols
in these settings, respectively, it is typically the case that by tailoring the construction to
a specific number of parties, much more efficient and simpler protocols can be designed.
Furthermore, by introducing very mild computational assumptions, like the existence of
cryptographic hash functions and pseudo-random functions, considerable performance
improvements can be obtained.

This chapter has a different focus than the previous ones, and the level of formalism here
will be significantly lower. This will be reflected mostly in the different security proofs,
where we will not describe the simulators in full detail as done before.

5.1 Outsourced Secure Computation

Considering multiparty computation for a small number of parties is a well-motivated
task. First, many relevant applications of multiparty computation only involve input from
a few parties. This is the case, for example, in the setting in which one party holds, say, a
sensitive medical image (perhaps an X-ray), and another party holds a machine learning
model that can be used to analyze this image, which could be of sensitive nature due
to the resources spent in obtaining such algorithm.1 Another example includes internet
voting within a small number of participants, like a board of directors, or games and
interactions over the internet like poker and auctions.

1This example in particular considers two parties, which corresponds to the dishonest majority setting,
whereas the protocols in this chapter consider honest majority computation for a small number of par-
ties.
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It can be argued, however, that the most relevant reason to study secret-sharing-based
multiparty computation for a small number of parties lies in its potential to be lever-
aged to handle much more general settings. More precisely, even if a given application
requires inputs from a lot of participants, the computation itself can be carried out by
only a small number of parties, which can even be different from any of the participants
providing input. Consider for example the setting in which a relatively large number of
financial institutions want to use their joint data to train a machine learning classifier
for fraud detection. It is a well-known fact that, generally speaking, having more training
data available is likely to result in a better classifier, so, the more financial institutions
provide input to the computation, the better the final outcome will be. However, for
multiparty computation, the more parties involved in the execution of a protocol the
less efficient the computation becomes. Hence, there is high motivation in keeping the
number of parties executing the MPC protocol low, while simultaneously many scenarios
like the one above demand a large number of parties providing input to the computa-
tion.

The solution to this objective mismatch is to detach the set of parties providing input to
the computation from the set of parties executing the MPC protocol. Recall that secret-
sharing based protocol proceed by letting the parties obtain shares of the inputs to the
computation, and then proceeding in a “gate-by-gate” fashion through the computation
of the circuit, until shares of the different outputs are obtained, point at which the par-
ties can reveal the output to each other. The protocols we have designed so far contain
methods for allowing the parties to secret-share their inputs, but the crucial observation
is that this initial step of the protocol does not need to be executed by the same par-
ties running the rest of the computation! More precisely, a different set of participants
holding inputs, which we refer to as the clients, can secret-share their inputs to the set
of parties who will execute the rest of the MPC protocol (referred to as the parties, or
the servers), in very much the same way as if these parties themselves had provided the
inputs. When shares of the outputs are obtained, the parties, instead of reconstructing
these values to each other, send these shares to the clients so that they can learn the
result of the computation.

This approach, typically called client-server model or outsourced computation model, is
likely to be more applicable in practical settings. For instance, in terms of the example
from above, the different financial institutions interested in training the fraud detection
classifier can secret-share their data towards a small set of servers who will execute an
MPC protocol to securely compute the desired machine learning model, obtaining shares
of this output, and sending these to the involved clients so that they can learn the result.
This way the financial institutions do not need to go through the complex, potentially
costly and error-prone process of setting up hardware and software for executing the
given multiparty computation protocol, and instead, this can be delegated to a smaller
set of servers optimized and thoroughly tested specifically for this task. The servers can
be thought of as some service providers, perhaps charging for their computation and
hence having a natural incentive to keep a healthy and reputable service. Due to this,
this model is sometimes called MPC as-a-service, and in the context of machine learning
as in the previous example, it is also called privacy-preserving machine learning as-a-
service.
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5.2 Organization of this Chapter

Motivated on the relevance of the setting of multiparty computation with a small number
of parties, we describe in Section 5.3 an actively secure protocol ensuring guaranteed
output delivery for n = 4 parties tolerating t = 1 corruption. Then, in Section 5.4, we
introduce an actively secure protocol with abort for n = 3 parties also withstanding
t = 1 corruption.

As we have already mentioned, our main motivation to study the setting of multiparty
computation with a small number of parties lies in terms of its practical value. In order
to keep the exposition of the protocols as simple as possible, we will be much more lax in
terms of the presentation and formalism when compared to the contents from Chapters 3
and 4. In particular, we will generally not introduce functionalities, and we will also not
provide full simulation-based proofs. However, the statements and proofs we provide
should be enough to convince the reader of the security properties of our protocols,
and it is not hard, though it is cumbersome, to turn these into formal simulation-based
arguments after having defined the appropriate functionalities.

Finally, for the sake of simplicity we assume that the function to be computed contains
only one single output that is intended to be learned by all the clients. This is not a
real restriction and our techniques can be easily adapted to accommodate other more
elaborate output configurations.

About two-party computation. As mentioned above, we only consider honest majority
computation in this chapter. In particular, this thesis does not address the highly relevant
case of n = 2 and t = 1, which finds applications in a lot of different scenarios. The main
motivation for this is twofold. First, the general case of dishonest majority computation
over Z/2kZ is studied in Chapter 6, and, similarly to the case of multiparty computation
over fields, there are no relevant optimizations nor ad-hoc constructions in the literature
specifically tailored to the case of two parties, that perform noticeable better than simply
instantiating the generic multiparty constructions with n = 2.

Secondly, as it has been explained already in several occasions, the dishonest majority
setting incurs in a much larger overhead with respect to honest majority multiparty com-
putation, given the need of computationally expensive techniques such as these arising
from the domain of public-key cryptography. As a result, although contradictory at first
glance, fixing t = 1, secure multiparty computation with n = 3 and n = 4 is consider-
ably more efficient than the case with n = 2, in spite of involving more parties. This
increase in efficiency comes with a detriment in security, however, since in either setting
the adversary breaks the system by controlling at least two parties, and the more parties
involved the “easier” it becomes fulfilling this requirement.
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5.3 Four Parties and One Corruption

We begin by describing in this section a secure computation protocol for 4 parties tol-
erating one active corruption. Furthermore, the protocol achieves guaranteed output
delivery. This protocol was introduced in the original work of [36], presented by the
author of this thesis at USENIX’21. The protocol is built around the traditional secret-
sharing scheme called Replicated Secret-Sharing, which enables the distribution of a
secret among several participants, while being able to choose which subsets of parties
are not allowed to learn anything about the secret, and which subsets should be able
to completely determine the secret. These are called general adversarial structures, and
they generalize the basic threshold structure we study in this thesis where the subsets
of parties that should not be allowed to learn the secret are all these subsets with at
most t parties. Here we make use of replicated secret-sharing in the context of t = 1
(that is, no single party should learn anything about the secret, but any two parties can
reconstruct the secret together) and n = 4. This scheme is described in Section 5.3.3.

Our main contribution consists in designing different subprotocols for manipulating
these shares, including protocols for multiplying secret-shared values, distributing
shares consistently, reconstructing outputs, and other tools like distributing messages
known to more than one single party correctly, which is used as a building block for some
of the other protocols. These are described in Sections 5.3.4, 5.3.5 and 5.3.6. We also make
use of these tools to design protocols for instantiating several primitives such as trunca-
tion and shared bit generation, among others which are described in Section 5.3.7. As an
additional contribution we introduce in Section 5.3.2 a novel approach to achieve guar-
anteed output delivery that achieves more meaningful privacy notion in practice, since
traditional techniques to obtain guaranteed output delivery ultimately rely on providing
the inputs of the computation in the clear to an honest party.

The original work of [36] includes additional contributions to the ones presented in this
thesis. Most notably, our protocol is fully implemented as part of the MP-SPDZ framework
[61], and we perform extensive benchmarks on different applications to the domain of
privacy preserving machine learning. Furthermore, we also compare the efficiency of
our protocol with respect to the comparable four-party protocol from [65], showing that,
although our protocol has the same theoretical communication complexity, our protocol
actually performs much better than the one from [65] for meaningful tasks. We refer the
reader to [36] for the complete set of experimental results and implementation-related
information.

As we have mentioned above, the results of this section are based on the original work
of [36], and most of the content below is taken verbatim from that work.

5.3.1 Preliminaries

As we already know, in the context of t < n/3, which is the setting in which the values
n = 4 and t = 1 fall, it is possible to design perfectly and actively secure protocols, and in
Chapter 3 we actually described one of such protocols. However, we can obtain great ef-
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ficiency gains by removing the requirement of obtaining perfect security, and instead, we
can settle for computational security by introducing certain cryptographic constructions
that can help in saving in communication. These tools are pseudo-random functions and
cryptographic hash functions, which are described next. We remark that, although the
resulting protocol that makes use of these tools would not be secure against an arbitrar-
ily powerful adversary anymore (since an attacker with enough computational resources
could in principle break these security assumptions), this is not a practical concern since
in reality these primitives would be instantiated with well-studied constructions that
are widely believed to be secure against realistic adversaries, while still providing great
efficiency.

5.3.1.1 Pseudo-Random Functions

We assume the existence of a pseudo-random function (or PRF for short) PRFk :
{0, 1}ℓ1 7→ Z/2kZ, which is a family of functions indexed by a key k ∈ {0, 1}ℓ0 . For a
formal treatment on pseudo-random functions we refer the reader to [60]. For the pur-
pose of our exposition it suffices to have the following rather informal definition.

Definition 5.1 (PRF—informal). The function PRF· : {0, 1}ℓ1 7→ Z/2kZ is a pseudo-random
function if, for a uniformly random key k ∈ {0, 1}ℓ0 , no efficient adversary lacking knowl-
edge of this key and having oracle access to the function PRFk(·) can distinguish this
mapping from a uniformly random function {0, 1}ℓ1 7→ Z/2kZwith better-than-negligible
probability.

Remark 5.1. In some of our protocols the output of the PRF will be assumed to lie in a
different set than Z/2kZ. For example, this is the case in the protocol from Section 5.3.7.4,
where the PRF is assumed to output integers in Z/2kZ of bounded bit-length. In these
cases, it is mentioned in the corresponding protocol description where the output is as-
sumed to be.

5.3.1.2 Cryptographic Hash Functions

We also assume the parties sample function H : {0, 1}∗ 7→ {0, 1}ℓ22 from a collision-
resistant hash function family. For a formal treatment on these functions we again refer
the reader to [60]. For the purpose of our exposition it suffices to have the following
informal definition.

Definition 5.2 (Cryptographic hash function—informal). A family of functions {0, 1}∗ 7→
{0, 1}ℓ2 is a collision-resistant family if, for a function H sampled uniformly at random
from this family, no efficient adversary can find x1 6= x2 such that H(x1) = H(x2).

2Formally the domain of the function has to be bounded but we omit this technicality.
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5.3.1.3 Assumed Setup

In several of our subprotocols we will need to assume that different subsets of the four
parties have access to a common uniformly random key, that will be used to seed the
pseudo-random function from above. This will be made clear in every relevant protocol.
This is a one-time setup that is reused for any number of subsequent secure computation
executions.

5.3.1.4 Multicast Channel

As in all the previous protocols we have described in this work, we assume the parties
have access to a broadcast channel, which, in the case of t = 1 and n = 4, can be
realized with a perfectly secure protocol given that t < n/3. However, for our protocol
we will need a multicast channel, which acts in the same way as the broadcast channel
except that only a subset of the parties is involved (that is, only a subset of the parties
receive the same value distributed by the sender).

5.3.2 Achieving Guaranteed Output Delivery

As in Section 3.4, the general strategy to achieve guaranteed output delivery is to allow
the parties, every time an abort takes place, to identify a pair of parties {Pi ,Pj} where
at least one of them is corrupt. Such pair is called a semi-corrupt pair. Once such pair
has been detected, even though it is not known which of these two parties is corrupted,
it can be concluded that the other two parties outside the pair are honest, since the
adversary is assumed to corrupt at most one party. As a result, the parties can simply
provide their inputs to any of these two identified honest parties, who can carry out the
computation locally and announce the outputs. This is secure according to our security
definition, given that the only requirement is that the adversary does not learn anything
about the honest parties’ inputs.

In some of the protocols not only a semi-corrupt pair is found, but actually the actively
corrupt party is identified. The same reasoning as above applies. To accommodate for
these cases, we say that {Pi ,Pj} is a semi-corrupt pair if either Pi or Pj is corrupt, and
we allow for i = j , which corresponds to the case in which the actively corrupt party has
been identified.

Private Robustness: A More Meaningful Notion of Guaranteed Output Delivery

In the original work of [36], once a semi-corrupt pair has been identified, a different
approach to achieve guaranteed output delivery is proposed. The main issue with the
approach outlined above, that is, entrusting the computation to one of the honest parties
outside the semi-corrupt pair, is that this honest party gets to see all the sensitive infor-
mation in the clear. As mentioned before, formally speaking, this is not a problem since
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the security definition only requires that the adversary, who is assumed to corrupt one
single party, cannot learn anything about the honest parties’ inputs. By delegating the
computation to one party that is guaranteed to not be the corrupt party, the adversary
cannot learn the private inputs of the honest parties, and security is ensured.

However, this approach is an example of a mismatch between a theoretical model and
its meaning in practice. For example, consider the four servers to be large companies
offering an outsourced secure computation service, such as Apple, Facebook, Google and
Microsoft. Notice that the whole purpose of having such service is guaranteeing users
that their data will never rest in one of these single parties, so, as long as no two of these
companies are willing to share the data to each other, user data will remain private. This
is reasonable to expect given that the companies, which are already diverse enough,
share a strong incentive to keep a healthy service. Say the parties make use of a four-
party protocol tolerating one active corruption, such as ours, so that, even if one of the
four parties deviates arbitrarily from the protocol, privacy of client data is preserved. If
a semi-corrupt pair is detected, a traditional protocol with guaranteed output delivery
would provide all client data in the clear to one of the remaining parties. From the point
of view of a client using the service, this is completely unacceptable: if they trusted any
of these parties with their data initially then there would have been no need to execute
a multiparty protocol to begin with. Tagging one of these parties as “trusted”, simply
because it did not cheat in a given protocol execution, is counterintuitive and insufficient
in practice.

Given the above, an alternative method to obtain guaranteed output delivery once a
semi-corrupt pair is identified is proposed in [36]. This consists of the following. Let
{Pi ,Pj} be a semi-corrupt pair with i < j , and let {u, v} = [4]\{i , j}. The parties Pi ,Pu,Pv

execute an actively secure three-party protocol with abort to securely compute the given
function. If Pi is honest, the this protocol is guaranteed to terminate as it only involves
honest parties, and the desired results will be obtained. On the other hand, it can be the
case that Pi is the corrupt party, and in this case, it can happen that the execution of this
three-party protocol results in abort. However, in this case, the parties can determine
that Pi is the corrupt party, and at this point the two remaining parties Pu,Pv , which
are honest, can execute a passively secure protocol to compute the given function.3 This
ensures that the sensitive information never resides in one single party, even if this party
has been identified as honest.

The notion achieved above, called private robustness in [36], is much more meaningful
in practice given that it guarantees termination of the protocol while avoiding relying
on one single party computing the given function in the clear. Intuitively, this method
ensures that no single party, honest or corrupt, gets to see sensitive data on its own.
However, we remark that a more formal study of this model is not achieved in [36], and it
is left as future work. The biggest issue with formalizing this notion is that, technically, a
corrupt party may deliberately send its own state to other honest party, giving this party
the possibility of holding sensitive data in the clear by joining the received state with
its own internal state. Although this may seem a bit artificial, and heuristically it can be
3The reader may wonder why was the actively secure three-party protocol executed, given that Pu and Pv

were already identified as honest parties when the semi-corrupt pair was found. The reason for this is
that, although it may look counter-intuitive, actively secure three-party protocols with abort (tolerating
one corruption) such as the one we will describe in Section 5.4 are much more efficient than passively
secure two-party protocols.
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disallowed by asking parties to reject undesired incoming information, this imposes a
problem at the moment of studying the notion of private robustness formally.

A formal study of the intuitive idea of “not leaking sensitive data even to honest parties”
is done in [6]. In that work, feasibility results are presented, approaching formally the
issue highlighted above of honest parties receiving undesired messages that might allow
them to reconstruct sensitive information.

5.3.3 Replicated Secret-Sharing for Four Parties

As we have mentioned already, although we could make use of Shamir secret-sharing
as explained in Section 3.1, the main tool for the protocol from this section is a different
type of secret-sharing scheme, called Replicated Secret-Sharing, which was introduced
initially in [59]. This scheme, like Shamir secret-sharing, can be used for an arbitrary
number of parties n, although, unlike Shamir’s, the size of the share held by each party
grows exponentially with n, which makes it impractical for large values of n. However,
for n = 4 and t = 1, this scheme is highly practical and in fact it outperforms Shamir
secret-sharing given that, as we will see, it does not require any Galois ring extension for
it to work. The scheme works as follows.

Definition 5.3 (Sharing Procedure). Let s ∈ Z/2kZ. We define Share(s) as follows.

• Sample s1, s2, s3, s4 ∈R Z/2kZ uniformly at random subject to s = s1 + s2 + s3 +
s4 mod 2k .4

• Output (s1, s2, s3, s4), where si = {sj : j 6= i} for i ∈ [4].

As before, when each party Pi has si for i ∈ [4], we denote this by JsK. Furthermore, when-
ever we consider a secret-shared value JxK, we use the subindexed values x1, x2, x3, x4 to
denote the additive shares such that x = x1+x2+x3+x4, and we use the typewriter font
x1, x2, x3, x4 to denote the shares held by each party, that is, xi = (xj : j 6= i).

Given two shared values JxK and JyK, the parties can locally obtain shares of Jx ± yK by
performing the respective operation on their shares. This extends to multiplication by
a publicly known value. Additionally, given a value c ∈ Z/2kZ known by all parties, the
parties can obtain shares JcK in a canonical way by considering c = c1 + c2 + c3 + c4,
where c1 = c and c2 = c3 = c4 = 0. This enables the parties to locally add/subtract the
value c to a given shared value JxK to obtain Jx ± cK by first obtaining shares JcK and
then proceeding as above.

Now, given only one share si , the uniformly random value si is missing and therefore
nothing is leaked about the secret s , or, in other words, si follows the uniform distribution
in (Z/2kZ)3. On the other had, any pair of shares si , sj is enough to reconstruct the secret
since these together contain all the values s1, s2, s3, s4.

4For the rest of this chapter we will omit the mod2k notation.
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We now define the notion of consistent sharings, analogous to Definition 3.3 in Sec-
tion 3.1.1 for the case of Shamir secret-sharing. Intuitively, the parties have consistent
sharings if the correct “replication” holds among the data they possess. This is formal-
ized in the following definition.

Definition 5.4. Let si = (s
(i)
j : j ∈ [4]\{i}) ∈ (Z/2kZ)3 for i ∈ [4]. We say that (s1, s2, s3, s4)

is consistent, and in the case that each partyPi holds si we say the parties hold consistent
shares, if, for every i , j , u ∈ [4] and v ∈ [4] \ {i , j , u}, it holds that sv := s

(i)
v = s

(j)
v = s

(u)
v . In

this case, (s1, s2, s3, s4) constitutes sharings of s := s1 + s2 + s3 + s4.

5.3.3.1 Public Reconstruction

Let {i , j , u, v} = [4]. As pointed out before, given any two shares si = (sj , su, sv ) and
sj = (si , su, sv ), the secret s can be reconstructed by computing s = si + sj + su + sv .
However, in our context each share si is held by party Pi , and in the case that, say, Pi is
corrupt, the share si may be adversarially modified as s′i = (s ′j , su, sv ), with s ′j = sj + δ for
some δ ∈ Z/2kZ chosen by the adversary. In this case, the reconstructed secret would
be si + s ′j + su + sv = s + δ, which means the adversary managed to modify the secret.

Fortunately, if all of the four shares s1, s2, s3, s4 are used for reconstruction, it is possible
to detect which of the four announced vectors is incorrect, and reconstruct the correct
secret from this. This must be put in contrast to the results from Section 3.1.3, where,
in cases where there are enough shares, the underlying secret of Shamir secret-sharing
could be error corrected. Recall from Section 3.1.3 that error correction is only possible
if t < (n − d)/2, where d is the degree used for Shamir secret-sharing. In our current
setting this is still true, with the degree replaced by the threshold used in the secret-
sharing scheme, which is 1 in our case. We see that for t = 1 and n = 4 the bound
above 1 < (4 − 1)/2 = 1.5 holds, which is why error correction is possible. As we will
see in Section 5.4 when we use Replicated secret-sharing for t = 1 and n = 3, this bound
does not hold so error correction will not be possible, but error detection, which requires
t < (n − d), is actually possible.

We proceed to describe the method to perform error correction on some given an-
nounced shares, where one of them can be incorrect, to identify the incorrect share
and therefore recover the correct secret.

Definition 5.5. Let (s1, s2, s3, s4) be a consistent vector, and let s′i ∈ (Z/2kZ)3 such that
si = s′i for all but possibly one i ∈ [4]. We define the method RecSecret(s′1, s′2, s′3, s′4) as
follows:

1. Write s′i = (s
(i)
j : j ∈ [4] \ {i}).

2. For j ∈ [4], let sj be the majority value in (s
(i)
j : i ∈ [4] \ {j}).

3. Output s = s1 + s2 + s3 + s4.
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To see that the algorithm RecSecret works as intended, let i0 be the only index for which
(possibly) s′i0 6= si0 . Then, from the definition of consistency, we have that for every
j ∈ [4], s(i)j = s

(i ′)
j for every i , i ′ ∈ [4] \ {i0, j}. In particular, the majority value in (s

(i)
j : i ∈

[4] \ {j}) will be s
(i)
j for i ∈ [4] \ {i0, j}, which is the same value held in the unmodified

si . Hence, the reconstructed value is the same secret underlying the original consistent
shares (s1, s2, s3, s4).

5.3.3.2 Dealing Consistent Shares

Just like with Shamir secret-sharing, not every vector (s1, s2, s3, s4) is consistent, as it
has to satisfy certain special conditions to fulfill this definition. All of our subprotocols
that produce sharings of some kind, like for example the protocol from Section 5.3.6 that
produces shares of a product given shares of the two factors, return consistent shares
assuming that the input shares are consistent to begin with. This invariant of holding
consistent shares is then preserved throughout the circuit computation, which ensures
that the sharings of the different outputs are also consistent, and allows the intended
receiver to perform error correction as described in Definition 5.5

The first sharings the parties hold will be these distributed by the clients in the input
phase. As a result, to preserve the invariant that all sharings are consistent, we must
ensure that the inputs secret-shared by the different clients are themselves consistent.
Since an actively corrupt client may send arbitrary shares to the parties, in particular
inconsistent ones, the parties must execute a small subprotocol to verify the consistency
of the received shares. This is described next.

Protocol ΠConsistency

Input: For each i ∈ [4], party Pi receives si = (s
(i)
j : j ∈ [4] \ {i}) from a given client with ID

id.
Output: A flag signaling whether (s1, s2, s3, s4) is consistent
Protocol: The parties proceed as follows.

1. For every i ∈ [4]: every Pj for j ∈ [4] \ {i} multicasts s(j)i to {Pu : u ∈ [4] \ {i}}.

2. For every i ∈ [4]: every Pj for j ∈ [4]\{i} updates s(j)i to be the majority value among
the multicasted values {s(u)i : u ∈ [4] \ {i}}. If no majority exists, then Pj broadcasts
(BadClient, id, i) to all the parties

3. If two messages from two different parties of the form (BadClient, id, i), for the same
i , are sent in the multicast channel, then the parties set all their shares to 0 (which
constitute trivial consistent sharings of the value 0).

Proposition 5.1. At the end of the execution of Protocol ΠConsistency the parties output
consistent shares. Furthermore, if the client is honest, then these shares are the ones
distributed by the client initially.

Proof. If the condition in the final step is satisfied then it is obvious that the parties
output consistent shares. If, on the other hand, this does not hold, it is because for every
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i ∈ [4], there was a majority among the multicasted values {s(u)i : u ∈ [4] \ {i}}—indeed,
if this was not the case, then the at-least-two honest parties with indexes in [4] \ {i}
would have broadcasted (BadClient, id, i)—so the parties in [4] \ {i} all set their value
s
(u)
i to be the same. Furthermore, if the client is honest, then it cannot happen that
there is no strict majority among the multicasted values {s(u)i : u ∈ [4] \ {i}}, since, even
though a corrupt party Pu may multicast a different value than the one it received, the
two remaining honest parties in [4] \ {i} will multicast the values they received from the
client, which are the same.

Remark 5.2 (Optimizing the verification). One can optimize Protocol ΠConsistency to save in
communication by requiring the parties to exchange digests H(s(j)i ) instead of the actual
values s(j)i , and, in case that a party sees it needs to update its value to a different one,
it can ask the other parties to run the original protocol without the hashes. This way,
optimistically, the parties would only send digests to each other, which can be consid-
erably shorter than the actual values. This is particularly the case if the same client is
providing as input several values, since all the shares corresponding to these values can
be concatenated together before hashing.

5.3.4 Joint Message Passing

We begin by describing a subprotocol that enables a pair of parties, both knowing a value
in common, to communicate this value to another party while ensuring that either this
party receives the correct value held by both parties, or the execution ends in a semi-
corrupt pair being identified. This subprotocol is used as a building block in our main
secure computation protocol. More specifically, it is used in the ΠInput2 subprotocol from
Section 5.3.5.2, which in turn is used for the multiplication protocol from Section 5.3.6.

The idea behind the protocol, named ΠJMP, from Joint Message Passing, is quite simple:
both parties knowing the common value will send this to the intended receiver, who
accepts the transmission if the two values coincide. Else, the receiver announces that
these two values do not match, and two senders have a chance to “defend themselves”.
This process eventually resolves in a semi-corrupt pair, depending on which parties try to
defend themselves and how. Finally, for efficiency purposes, only one sender is required
to send the message, while the other sender can simply send a digest of the intended
message, which is sufficient for the purpose of verifying consistency of the two values.
This is particularly useful when there a lot of messages being transmitted simultaneously,
which as we will see is the case if the circuit being computed is very wide given that ΠJMP
will be used in every multiplication gate.

Protocol ΠJMP(x ,Pi ,Pj ,Pu)

Input: Parties Pi and Pj share a common input x lying in some set.
Output: Party Pu learns x
Protocol: The parties proceed as follows:

1. Pi sends mi = x to Pu
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2. Pj sends mj = H(x) to Pu

3. Pu checks if mj = H(mi ). If this holds, then Pu outputs mi , and the protocol ends.

4. Else, Pu multicasts (accuse,Pi ,Pj ,m
′
i ,m

′
j) to {Pi ,Pj ,Pu}, wherem′

i = mj andm′
j = mj

for an honest Pu , but a corrupt Pu may change these values.

5. If H(m′
i ) = m′

j , then the parties output the set {Pu}

6. If m′
i 6= mi , then Pi multicasts (accuse,Pu) to {Pi ,Pj ,Pu}.

7. If m′
j 6= mj , then Pj multicasts (accuse,Pu) to {Pi ,Pj ,Pu}

8. The parties agree on a semi-corrupt pair as follows:
• If only Pi multicasts (accuse,Pu), then the parties output the set {Pi ,Pu}.
• If only Pj multicasts (accuse,Pu), then the parties output the set {Pj ,Pu}.
• If both Pi and Pj multicasts (accuse,Pu), then the parties output the set {Pu}.
• If none of Pi or Pj multicasts (accuse,Pu), then the parties output the set
{Pi ,Pj}.

9. The parties in {Pi ,Pj ,Pu} send the identified semi-corrupt pair to Pv , where {v} ∈
[4] \ {i , j , u}. Pv outputs the set sent by at least two parties.

Proposition 5.2. At the end of the execution of ΠJMP(x ,Pi ,Pj ,Pu), either (1) Pu learns x
correctly, or (2) the parties output a semi-corrupt pair. Either case, Pv does not learn
anything about x .

Proof. If the valuesmi andmj received by Pu satisfy H(mi ) = mj , then it must be the case
that mi = x . This is because either Pi or Pj is honest, which means that either mi = x or
mj = H(x). In the first case the claim is trivially true, and in the second, since H(x) = mi,
we cannot have mi 6= x or else a collision in the hash function H would have been found.
This would be formalized by considering an adversary for the hash function challenge
who runs the environment internally: if this environment can distinguish the ideal from
the real world executions (having a properly defined functionality and simulator), then
it can only be because such collision was found.

Now we show that if Pu multicasts (accuse,Pi ,Pj ,m
′
i ,m

′
j) to {Pi ,Pj ,Pu}, then the output

produced by the parties is indeed a semi-corrupt pair. Let us analyze the case in which
Pu is honest first. In this case, m′

i = mi andm′
j = mj , and these values satisfy H(mi ) 6= mj ,

which can only happen if either Pi or Pj is corrupt. At this point, if Pi is honest, it will
not multicast (accuse,Pu) since mi = m′

i . Similarly, if Pj is honest, it will not multicast
(accuse,Pu) sincemj = m′

j . As a result, the only possibility is that either the corrupt party
multicasts (accuse,Pu), in which case this party together with Pu are output as a semi-
corrupt pair, or that no party among Pi and Pj multicasts (accuse,Pu), in which case the
semi-corrupt pair produced is {Pi ,Pj}. Either case, the pair contains the corrupt party.

In the case in which Pu is corrupt, we see that the only way in which a semi-corrupt pair
not containing Pu can be produced is that none of Pi or Pj multicasts (accuse,Pu), which
can only happen if m′

i = mi and m′
j = mj . Since Pi and Pj are honest, these values satisfy

mj = H(mi ), so it holds that m′
j = H(m′

i ), which, by the protocol instructions, produces
the corrupt party {Pu}.
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Communication complexity ofΠJMP The communication complexity of ΠJMP in the op-
timistic case in which no semi-corrupt pair is identified consists of 1 element in Z/2kZ,
plus one hash. Hence, the amortized communication complexity when many calls to this
protocol are made is of only 1 element in Z/2kZ.

5.3.5 Secret-Sharing Joint Inputs

We described in Section 5.3.3.2 a method by which the parties can verify that the inputs
secret-shared by the clients are consistently distributed. Additionally, in some parts of
our protocol the parties themselves will need to distribute inputs to the other parties,
which can be done by using the aforementioned consistency check. However, in some
of these cases, the inputs to be distributed are not only known to one single party, but
sometimes they are known to two, or even three of the parties. In these cases, providing
input and verifying its consistency becomes a much simpler task, which we describe next.
Below we let {i , j , u, v} = [4].

5.3.5.1 Input Known by Three Parties

This is the simplest of the settings in which the input to be secret-shared is held by three
parties. In this case, as described in the protocol below, the parties can obtain shares
non-interactively.

Protocol ΠInput3

Input: Parties Pi ,Pj ,Pu have common input x
Output: The parties obtain consistent shares JxK
Protocol: Let xv = 0 for v ∈ {i , j , u}, and xv = x for v ∈ [4] \ {i , j , u}. Each party Pℓ for
ℓ ∈ [4] outputs xℓ = {xh : h 6= ℓ}

The following is trivial to see.

Proposition 5.3. The output of ΠInput3 are consistent shares JxK, where the view of Pv is
independent of the input x

5.3.5.2 Input Known by Two Parties

When the input to be secret-shared is known by two parties the parties can obtain con-
sistent shares with the help of some pre-shared setup. This consists of, for each u ∈ [4],
the parties in [4] \ {u} having a shared random key ku . With this at hand, the parties can
obtain shares of the given input by simply executing one call to ΠJMP, which is used to
help one party obtain its missing share. Details are provided below.
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Protocol ΠInput2

Input: Parties Pi ,Pj have common input x
Output: The parties obtain consistent shares JxK
Setup: Pi ,Pj ,Pu have a common random key kv .
Protocol: The parties proceed as follows

1. Let id be a fresh common ID for the given protocol call.
• xv = PRFkv (id) (known to Pi , Pj and Pu)
• xi = xj = 0 (trivially known to all parties)
• xu = x − xv (known to Pi and Pj )

2. The parties call ΠJMP(xu,Pi ,Pj ,Pv ) so that Pv obtains xu , or the parties output a
semi-corrupt pair.

3. If no semi-corrupt pair is produced in the previous step, each party Pℓ for ℓ ∈ [4]
outputs xℓ = {xh : h 6= ℓ}. Else, the parties output the semi-corrupt pair.

Proposition 5.4. After the execution of ΠInput2(x ,Pi ,Pj ,Pu), either (1) the parties have
consistent shares JxK, or (2) the parties output a semi-corrupt pair. Either case, Pu and
Pv learn nothing about x .

Proof. The only messages transmitted are sent through the call to ΠJMP(xu,Pi ,Pj ,Pv ), in
which Pi and Pj send their common value xu to Pv . From Proposition 5.2, this call results
in either Pv learning xu , or the parties identify a semi-corrupt pair, and in either case, Pu

learns nothing about xu , nor x .

Finally, we claim that Pv learns nothing about x , even if it learns xu . More precisely,
we claim that xu looks indistinguishable from random to Pv . To see this, consider the
uniformly random value x ′u = x − r , for r ∈R Z/2kZ. Pv can only distinguish between x ′u
and xu , if it can distinguish between r and PRFkv (id). However, this is not possible from
the properties of the PRF, given that the key kv is uniformly random and unknown to Pv .
This would be formalized by explicitly describing an adversary for the PRF challenge that
runs the environment internally. As argued above, the environment (having defined an
appropriate simulator and a functionality) will only be able to distinguish the real and
ideals world by distinguishing the PRF output from random, so the adversary can make
use of this to solve the PRF challenge.

Communication complexity ofΠInput2. This amount to one call of ΠJMP, which involves
1 element in Z/2kZ.

5.3.6 Secure Multiplication

Now we make use of the protocol ΠInput2 from Section 5.3.5.2 above to design a protocol
ΠMult to securely compute consistent shares JxyK from shared values JxK and JyK. The
protocol is described below.
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Protocol ΠMult

Input: Parties have consistent shares JxK and JyK.
Output: The parties get consistent shares JxyK, or they produce a semi-corrupt pair.
Protocol: The parties proceed as follows:

1. For every u ∈ [4], parties call the non-interactive method JxuyuK ←
ΠInput3(xuyu,Pi ,Pj ,Pv ), where {i , j , v} = [4] \ {u}.

2. For every pair u, v ∈ {1, 2, 3, 4} such that u < v , parties Pi and Pj with {i , j} = [4] \
{u, v}, who both know xu, xv , yu and yv , run the protocolΠInput2(xuyv+xvyu,Pi ,Pj ,Pv )
to obtain either Jxuyv + xvyuK, or a semi-corrupt pair.

3. If no semi-corrupt pair was produced in the previous step, the parties locally addJxyK ← ∑
u,v∈[4],u<v Jxuyv + xvyuK +∑4

u=1 JxuyuK and output these sharings. Else,
they output the semi-corrupt pair.

Theorem 5.1. At the end of Protocol ΠMult the parties get consistent shares JxyK, and no
single party learns any additional information about x or y .

Proof. Regarding privacy, the only communication happens in the six calls to ΠInput2,
which, from Proposition 5.4, do not leak any additional information to the parties in-
volved. Additionally, from the same proposition, these calls either succeed or result in
the identification of a semi-corrupt pair.

Finally, it remains to be seen that, in the case no semi-corrupt pair is identified, the
output produced by the parties are consistent shares Jx · yK. To see this, observe that
x = x1+x2+x3+x4 and y = y1+y2+y3+y4, so xy =

∑
u,v∈[4],u<v (xuyv+xvyu)+

∑4
u=1 xuyu ,

which is precisely the linear combination computed by the parties in the protocol.

When ΠMult is called on inputs JxK and JyK, obtaining output JzK, we denote this by JzK←
ΠMult(JxK , JyK).
Communication complexity ofΠMult. This amounts to 6 calls to ΠInput2, which involve 6
elements in Z/2kZ in total. In contrast, the protocol from Chapter 3 requires the much
more dramatic figure of 16n log(2n) = 16 ·4 ·3 = 192 elements in Z/2kZ.5 The log(2n) = 3
factor comes from the need of using a Galois ring extension of this degree to admit the
construction of hyper-invertible matrices of Section 3.3.1.1. However, even without this
factor, the communication complexity of the protocol based on Shamir secret-sharing
is much worse than the one based on Replicated secret-sharing. This is because, in the
latter setting, we exploit the fact that the parties have pre-shared keys that can help them
set compute some of the shares involved in the computation without communicating to
the other parties.

5These include the communication from the offline and online phases. The online phase only consumes
6n log(2n), which is still a large number: 6 · 4 · 3 = 72.
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Computing dot products securely. Protocol ΠMult can be easily modified to securely
compute JzK from (Jx1K , ... , JxℓK) and (Jy1K , ... , JyℓK), where z =

∑ℓ
h=1 xhyh, with a cost

that is independent of ℓ. This is achieved by modifying ΠMult as follows:

1. For every u ∈ [4], parties call the non-interactive method
r∑ℓ

h=1 xhuyhu

z
←

ΠInput3(
∑ℓ

h=1 xhuyhu,Pi ,Pj ,Pv ), where {i , j , v} = [4] \ {u}.

2. For every pair u, v ∈ {1, 2, 3, 4} such that u < v , parties Pi and Pj with {i , j} =

[4] \ {u, v}, who both know xu, xv , yu and yv , run the protocol ΠInput2(
∑ℓ

h=1(xhuyhv +

xhvyhu),Pi ,Pj ,Pv ) to obtain either
r∑ℓ

h=1(xhuyhv + xhvyhu)
z
, or a semi-corrupt pair.

3. If no semi-corrupt pair was produced in the previous step, the parties locally addr∑ℓ
h=1 xhyh

z
←
∑

u,v∈[4],u<v

r∑ℓ
h=1(xhuyhv + xhvyhu)

z
+
∑4

u=1

r∑ℓ
h=1 xhuyhu

z
and

output these sharings. Else, they output the semi-corrupt pair.

Being able to securely compute dot products with a cost that is independent of the
dimension is of the up-most importance for applications that make extensive use of
this operation, such as these involving matrix arithmetic like in the case of deep neural
networks, support vector machines, and many other machine learning models.

5.3.7 Some Primitives

Now we turn our discussion to a set of primitives that are useful when considering more
advanced applications that are not expressed in a natural way as a simple combination
of additions and multiplications. These are probabilistic truncation, discussed in Sec-
tion 5.3.7.1 below, which is particularly useful when dealing with real-valued arithmetic,
and the generation of shared random bits discussed in Section 5.3.7.2, which are a critical
tool for a wide range of other primitives, and the conversion between binary and integer
arithmetic, described in Section 5.3.7.3. We also present a protocol for obtaining shares
of the bit-decomposition of a given shared value in Section 5.3.7.3, and finally, we discuss
a protocol for generating the so-called edaBits in Section 5.3.7.4.

In this section, we augment the notation of secret-shared values JsK as JsKk , to make
explicit the fact the the sharings are modulo 2k . In particular, the notation JbK1 represent
shares modulo 2 of a bit b ∈ {0, 1}. If the subindex is omitted then it implicitly means
sharings modulo 2k . Finally, given s ∈ Z/2kZ, we denote by (s[k − 1], ... , s[0]) ∈ {0, 1}k
the bit-decomposition of s .

5.3.7.1 Probabilistic Truncation

An important primitive for a wide range of applications of secure multiparty computation
consists in computing JyK from JxK, where y =

⌊
x
2m

⌉
for some m ∈ [k ]. This is particularly

important for applications involving real-valued arithmetic, since this type of arithmetic

184



Chapter 5 MPC over Z/2kZ for a Small Number of Parties

is emulated by making use of fixed-point arithmetic in secure multiparty computation
applications involving real numbers.

The following protocol does not compute JyK with y =
⌊

x
2m

⌉
, but rather it computes an

“approximation” of this value. More precisely, the output satisfies y = bx/2mc+ u, where
u ∈ {0, 1} and u is “biased towards the right result”, which means that u is more likely to
be 1 (0) the closer x/2m gets to dx/2me (bx/2mc).

Protocol ΠTrunc

Input: JxK with the most significant bit of x being 0.
Setup: For i ∈ {3, 4}, the parties {Pj : j 6= i} have a shared key ki .
Output: Jbx/2meK rounded probabilistically.
Protocol:

1. Let si = PRFki (id) for i ∈ {3, 4} and si = 0 for i ∈ {1, 2}. Let r = s1 + s2 + s3 + s4. The
parties have shares JrK by defining the ℓ-th share to be {si}i ̸=ℓ.

2. P1 and P2 compute rk−1 and r ′ =
∑k−2

i=m ri · 2i−m , where r =
∑k−1

i=0 ri · 2i is the
bit decomposition of r . The parties call Jrk−1K ← ΠInput2(rk−1,P1,P2) and Jr ′K ←
ΠInput2(r

′,P1,P2).

3. All parties compute JcK← JxK + JrK.
4. The parties call ΠJMP(c3 + c4,P1,P2,P3) and ΠJMP(c3 + c4,P1,P2,P4), and P3 and P4

reconstruct c =
∑4

i=1 ci .

5. P3 and P4 compute c ′ ←
⌊
(c mod 2k−1)/2m

⌋
and c ′′ =

⌊
c/2k−1

⌋
, and call Jc ′K ←

ΠInput2(c
′,P3,P4) and Jc ′′K← ΠInput2(c

′′,P3,P4).

6. All parties call Jrk−1 · c ′′K← ΠMult(Jrk−1K , Jc ′′K) and let JbK← Jrk−1K⊕Jc ′′K = Jrk−1K+Jc ′′K− 2 · Jrk−1 · c ′′K.
7. All parties output Jc ′K− Jr ′K + JbK · 2k−m−1.

Cheating identification
Output the set produced by the first instance of ΠJMP to fail.

Theorem 5.2. After the execution of ΠTrunc either the parties output a semi-corrupt pair,
or the parties learn JyK, where y = bx/2mc + u with u ∈ {0, 1} such that Pr[u = 1] =
(x/2m)− bx/2mc. Either case, the parties do not learn anything about x .

Proof. For the sake of the proof we make explicit the mod2k notation when dealing with
congruences. First, we observe that privacy is preserved throughout the computation
given that the sub-primitives ΠJMP and ΠMult are private. The only potential leakage
comes from the calls to ΠInput2. However, this only reveals c = x + r = x + s3 + s4 mod 2k

to P3 and P4, but since s3 and s4 are uniformly random and unknown to P3 and P4 re-
spectively, the leakage of these calls is zero.

It remains to analyze the correctness of our construction. We begin by observing that
c = x + r − 2ku as integers, where u is the potential overflow bit of adding x and r .
Similarly, (c mod 2k−1) = (x mod 2k−1) + (r mod 2k−1)− 2k−1v , where v is the potential
overflow bit of adding (x mod 2k−1) and (r mod 2k−1)modulo 2k−1. Notice that, since x ’s
most significant bit is 0, it holds that (x mod 2k−1) = x and also that u = v · rk−1. Let
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c = 2k−1 · c ′′ + (c mod 2k−1), where c ′′ =
⌊
c/2k−1

⌋
, the expressions above allow us to

conclude that

2k−1 · c ′′ = c − (c mod 2k−1)

= (x + r − 2ku)− (x + (r mod 2k−1)− 2k−1v)

= 2k−1rk−1 + 2k−1v − 2k · v · rk−1

= 2k−1(rk−1 ⊕ v),

where rk−1 denotes the most significant bit of r . From the above it follows that c ′′ =
rk−1 ⊕ v , or v = c ′′ ⊕ rk−1. This is turn shows that v is equal to b from the protocol.

Now, (c mod 2k−1) = x + (r mod 2k−1)− 2k−1v , thus⌊
(c mod 2k−1)/2m

⌋
=

⌊
x + (r mod 2k−1)

2m

⌋
− 2k−m−1v .

Furthermore, it holds that c ′ =
⌊
(x + (r mod 2k−1))/2m

⌋
= bx/2mc+

⌊
(r mod 2k−1)/2m

⌋
+

w , with w ∈ {0, 1}. Given the above, together with the fact that the r ′ from the protocol
equals

⌊
(r mod 2k−1)/2m

⌋
, we obtain that the output produced by the protocol is

c ′ − r ′ + 2k−m−1b = bx/2mc+ w .

Finally, it is easy to see that w = 1 with probability equal to the decimal part of x
2m , which

shows that the output is biased towards bx/2me.

5.3.7.2 Random Bit Generation

Another important primitive is the generation of random shares JbK, where b ∈R {0, 1}.
These sharings have multiple uses. For example, they can be used to convert shared
bits JrK1 modulo 2, where r ∈ {0, 1} into JrKk , which are sharings of the same value but
modulo the larger power 2k . They can also be used to obliviously select a shared value
among two options at random. More precisely, given two shared values JxK and JyK, andJbK where b ∈R {0, 1}, the parties can obtain shares JrK where r ∈R {x , y}, without know-
ing which value between x and y was selected, by computing JrK← JbK JxK+(1− JbK) JyK
(using ΠMult). This can be generalized to sorting networks and random permutations.

Protocol ΠRandBit

Setup: (P1,P2) and (P3,P4) have pre-shared keys k12 and k34, respectively.
Output: JbK for uniformly random b ∈ {0, 1}.
Protocol:

1. (P1,P2) and (P3,P4) use k12 and k34 to sample b12 = PRFk(id) and b23 = PRFk34(id),
respectively.

2. The parties call ΠInput2(b12,P1,P2) and ΠInput2(b34,P3,P4) to obtain Jb12K and Jb34K.
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3. The parties call Jb12 · b34K ← ΠMult(Jb12K , Jb34K) and then run locally JbK ← Jb12K +Jb34K− 2 · Jb12 · b34K.
Cheating identification
Output the set produced by the first sub-protocol to fail.

Theorem 5.3. After the execution of ΠRandBit either the parties output a semi-corrupt pair,
or the parties obtain shares JbK, where b is uniformly random in {0, 1}.

Proof. We can see that, in case that none of the subprotocol calls end in the identification
of a semi-corrupt pair, the output produced by the parties is JbK, where b = b12⊕b34. b12
looks indistinguishable from random to the parties {P3,P4} since it is the output of the
PRF using the uniformly random key k12, which is known only to {P1,P2}, hence, b is also
indistinguishable from random. A similar argument shows that b looks indistinguishable
from random to the parties {P1,P2}.

Recall that we make the exponent k explicit in the secret-sharing scheme by denotingJsKk when s ∈ Z/2kZ is secret-shared using the construction from Definition 5.3. Let
ℓ ≤ k . A crucial observation is that, if each party Pi locally applies modulo 2ℓ to each
of its own additive shares {sj : j ∈ [4] \ {i}}, then the parties obtain shares

q
s mod 2ℓ

y
ℓ
.

This is denoted by
q
s mod 2ℓ

y
ℓ
← JsKk .

Conversion J·Kk ← J·K1. From the observation above we see that, given JsKk where
s ∈ {0, 1}, the parties can locally obtain Js mod 2K1 = JsK1. However, given JsK1, it is not
clear how the parties can obtain JsKk . This is achieved by means of the following simple
protocol which makes use of a shared random bit JbKk , with b ∈R {0, 1}:

1. Compute locally JcK1 ← JsK1 ⊕ JbK1
2. Reconstruct c ← JcK1.
3. Compute locally JsKk ← c + JbKk − 2c JbKk .

Privacy follows from the fact that b is uniformly random in {0, 1} and unknown to any
party, so c = s ⊕ b follows the same distribution, and correctness is a consequence of
the fact that c + b− 2cb = c ⊕ b = (s ⊕ b)⊕ b = s . This conversion, although is not local,
is denoted by JsKk ← JsK1.
5.3.7.3 Bit Decomposition

Many applications require more advanced operations than simple additions and mul-
tiplications, such as the use of truncation for real-valued arithmetic discussed in Sec-
tion 5.3.7.1. Another important tool lies in accessing individual bits of a secret-shared
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value JsKk , that is, if the bit-decomposition of s ∈ Z/2kZ is s =
∑k−1

i=0 2i s[i ], allowing
the parties to obtain shares of each bit s[i ]. For example, the computation of the secure
hash algorithms (SHA), which is a family of cryptographic hash functions, requires arith-
metic modulo 232, but it simultaneously makes use of operations at the bit level, like
permutation of bits.

The protocol ΠBitDec presented below achieves the task of bit-decomposition, that is,
obtaining (Js[k − 1]K1 , ... , Js[0]K1) from a secret-shared value JsKk . Observe that these
output bits are secret-shared over Z/2Z, and not over the original ring Z/2kZ. The mo-
tivation for this is that, if the goal is to execute a binary circuit on these bits (e.g. taking
as input two bit-decomposed values and returning a bit signaling which is the largest
of the two), then holding smaller shares and having these be homomorphic modulo 2
leads to higher efficiency. This was observed and exploited in the original work of [44].
However, if the shares are required to be over Z/2kZ, that is, the desired output is
(Js[k − 1]Kk , ... , Js[0]Kk), which could be the case for instance if one of these bits is in-
tended to be combined with other secret-shared values over Z/2kZ, then either the con-
version J·Kk ← J·K1 from the previous section can be applied to the output, or the protocol
can be easily modified to produce this output directly.

Protocol ΠBitDec

Input: Shared value JsKk .
Output: Binary replicated secret sharing (Js[k − 1]K1 , ... , Js[0]K1).
Protocol:

1. For i ∈ [4], the parties call Jsi [j ]K1 ← ΠInput3(si [j ], {Pj}j∈[4]\{i}) for j ∈ {0, ... , k − 1}.

2. Given Jxi [j ]K1 for all i ∈ [4] and j ∈ {0, ... , k−1}, and the fact that x = x1+x2+x3+x4,
the parties can compute (Js[k − 1]K1 , ... , Js[0]K1) using a binary adder.

5.3.7.4 Generating edaBits

Extended Double-Authenticated Bits, or edaBits for short, were introduced in the original
work of [50]. These cryptographic objects can be used to greatly improve the efficiency
of a wide range of primitives. An m-edaBit for some 1 ≤ m ≤ k consists of secret-
shared values (JrKk , Jr [m − 1]K1 , ... , Jr [0]K1), where r =

∑m−1
i=0 2i r [i ] and r [i ] ∈ {0, 1} for

i ∈ {0, ... ,m − 1}. In Chapter 7 we discuss these objects more concretely, together with
their applications, but in this section we restrict ourselves to showing how to generate
edaBits in the current setting of four parties with replicated secret-sharing.

Protocol ΠedaBits

Setup: For i ∈ [4], parties {Pj}j∈[4]\{i} have a pre-shared random key ki .
Output: (JrKk , Jr [m − 1]K1 , ... , Jr [0]K1) for a uniformly random m-bit value r ∈ Z/2kZ.
Protocol: We assume that the output of the PRF are m-bit integers.

1. For i ∈ [4], the parties in {Pj}j∈[4]\{i} generate a random m-bit value r ′i = PRFki (id).
Thus, the parties obtain Jr ′Kk , where r ′ = r ′1 + r ′2 + r ′3 + r ′4. Notice that r ′ ∈
[0,min(2m+2, 2k)− 1].
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2. The parties call ΠBitDec to obtain Jr ′[j ]K1 for j ∈ {m, ... ,m′}, where m′ =
min (dlog 4e , k)− 1.

3. The parties convert Jr ′[j ]Kk ← Jr ′[j ]K1 for j ∈ {m, ... ,m′}.

4. The parties compute JrKk = Jr ′Kk −∑m′

j=m 2j Jr ′[j ]Kk .
5. The parties output (JrKk , Jr ′[m − 1]K1 , ... , Jr ′[0]K1).

Theorem5.4. After the execution ofΠedaBits the parties obtain (JrKk , Jr ′[m − 1]K1 , ... , Jr ′[0]K1)
where r =

∑m−1
i=0 2i r [i ] and r is uniformly random and unknown to any party.

Proof. First, it is easy to see that the value r computed in step 4 of the protocol corre-
sponds to r = (r ′ mod 2m), which follows from the fact that r =

∑m−1
j=0 2j r ′[j ]. Now, we

claim that r is uniformly random in Z/2mZ and unknown to any party. To see this, observe
that r ≡ (r ′1 + r ′2 + r ′3 + r ′4) mod 2m, and each party Pi misses the indistinguishable-from-
random value r ′i mod 2m.

5.4 Three Parties and One Corruption

Now we turn our attention to considering protocols for n = 3 and t = 1. These values
satisfy the bound n/3 ≤ t < n/2, which puts us in the honest majority setting. Even
though in this case it is possible to obtain protocols with statistical security satisfying
guaranteed output delivery, we settle for computational security by making use of a
cryptographic hash function, and we aim at security with abort rather than guaranteed
output delivery. This allows us to design much more concretely efficient protocols in this
setting than the ones we could obtain by instantiating generic constructions for arbitrary
values of t and n with the particular case of t = 1 and n = 3.

As in Section 5.3, our main tool will be Replicated secret-sharing, this time instantiated
with three parties and threshold one. We describe how this secret-sharing scheme works
for the particular case of n = 3 and t = 1 in Section 5.4.2. Then we present in Section 5.4.3
a series of tools that we will need for our main protocol, which is finally presented in
Section 5.4.4.

This protocol is introduced in the original work of [4], which presents a generic compiler
to turn any passively secure protocol satisfying certain extra property into an actively
secure one. This extra requirement basically states that, when the corruption is active,
the only thing the adversary can break is multiplication by introducing an additive er-
ror to the result of each product. This turns out to be the case, for example, with the
Shamir-secret-sharing-based multiplication protocol from Section 4.2, but also with the
three-party protocol based on replicated secret-sharing from Section 5.4.3.3 below. The
original work of [4] considers this generic compilation process from any passively secure
protocol, and instantiates the underlying protocol with a passively secure version of the
protocol from Chapter 4, and also with the replicated-secret-sharing-based protocol from
the current section. Furthermore, in [4] a full implementation of these two protocols is
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presented, together with different benchmarks and comparisons with similar works. In
this thesis we do not present the generic compilation process but rather focus on the
concrete protocol with n = 3 and t = 1 using replicated secret-sharing. We also do
not discuss the experimental contributions, and neither present full simulation-based
proofs.

As we have mentioned, the results from this section are taken from the original work
of [4], and some paragraphs are taken verbatim from that work. This happens mostly
in the description of some of the protocols and the proofs of their security.

5.4.1 Pseudo-Random Functions and Cryptographic Hash Functions

As in Section 5.3, we make use of the tools described in sections 5.3.1.1 and 5.3.1.2. We
assume the existence of a (family of) cryptographic hash function H(·), and a pseudo-
random function PRFk(·). The domain and codomain of these functions will be clear from
context.

5.4.2 Replicated Secret-Sharing for Three Parties

In this section, given x , y ∈ Z, we use x ≡ℓ y to denote the fact that x and y are congruent
modulo 2ℓ. We begin by describing replicated secret-sharing with three parties and one
corruption.

Definition 5.6 (Sharing Procedure). Let s ∈ Z/2ℓZ. We define Share(s) as follows.

• Sample s1, s2, s3 ∈R Z/2ℓZ uniformly at random subject to s ≡ℓ s1 + s2 + s3.

• Output (s1, s2, s3), where si = (si , si+1) for i ∈ [3].6

As usual, when each party Pi has si for i ∈ [3], we denote this by JsKℓ. Notice the subindex
ℓ, making explicit the fact that the sharings are modulo 2ℓ. Also, as before, whenever we
consider a secret-shared value JxKℓ, we use the subindexed values x1, x2, x3 to denote
the additive shares such that x = x1 + x2 + x3, and we use the typewriter font x1, x2, x3
to denote the shares held by each party, that is, xi = (xi , xi+1).

From two shared values JxKℓ and JyKℓ, the parties can obtain shares of Jx ± yKℓ non-
interactively by performing the respective operation on their shares. This extends to
multiplication by a publicly known value. Also, given a value c ∈ Z/2ℓZ known by all
parties, the parties can obtain shares JcKℓ in a canonical way by considering c = c1 +
c2 + c3, where c1 = c and c2 = c3 = 0. This enables the parties to locally add/subtract
the value c to a given shared value JxK to obtain Jx ± cKℓ by first obtaining shares JcKℓ
and then proceeding as above.
6Throughout this section, when clear from context we assume the subindexes that range in [3] wrap around
modulo 3 in that set.
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As in Section 5.3.7, given JsKℓ the parties can locally obtain q
s mod 2h

y
h
for any 1 ≤ h ≤ ℓ

by simply reducing modulo 2h each of their additive shares. This local operation is de-
noted by

q
s mod 2h

y
h
← JsKℓ. This will be important for our main protocol in Section 5.4.4

since the computation of the circuit will be done modulo 2ℓ for some k < ℓ, whereas the
result is expected to be modulo 2k . Using the local conversion from above the parties
can obtain shares of the result in the desired set Z/2kZ.

Now, in terms of privacy, given only one share si , the uniformly random value si is missing
and therefore nothing is leaked about the secret s , or, in other words, si follows the
uniform distribution in (Z/2ℓZ)2. On the other hand, any pair of shares si , sj is enough
to reconstruct the secret since these together contain all the values s1, s2, s3.

We now define the notion of consistent sharings, analogous to Definition 5.4 for the case
of Replicated secret-sharing with four parties. Intuitively, the parties have consistent
sharings if the correct “replication” holds among the data they possess. This is formalized
in the following definition.

Definition 5.7. Let si = (s
(i)
i , s

(i)
i+1) ∈ (Z/2ℓZ)2 for i ∈ [3]. We say that (s1, s2, s3) is

consistent, and in the case that each party Pi holds si we say the parties hold consistent
shares, if, for every i ∈ [3], it holds that si := s

(i)
i = s

(i−1)
i . In this case, (s1, s2, s3)

constitutes sharings of s := s1 + s2 + s3.

5.4.2.1 Public Reconstruction

As in Section 5.5, we need to design a method for the parties to reconstruct a given
secret-shared value JzKℓ to the clients, so that these can learn the results of the com-
putation. However, a corrupt party may lies about its own share, which may lead to a
value being reconstructed incorrectly. To this end, the clients make use of the existing
replication among the parties’ shares to determine whether the announced shares lead
to the reconstruction of the correct secret or not. Unfortunately, unlike the method from
Section 5.5 in the context of replicated secret-sharing with four parties, in our current
setting the clients may not be able to reconstruct the correct secret, but it is guaranteed
that they will not be fooled into reconstructing an incorrect secret. In the terminology
from Section 3.1.3, this means that the clients will be able to perform error detection,
which is possible in the setting t < n/2, in contrast to error correction, which requires
the stronger bound t < n/3.

Definition 5.8. Let (s1, s2, s3) be a consistent vector, and let s′i ∈ (Z/2ℓZ)2 such that
si = s′i for all but possibly one i ∈ [3]. We define the method RecSecret(s′1, s′2, s′3) as
follows:

1. Write s′i = (s
(i)
i , s

(i)
i+1).

2. For j ∈ [3], check if s(j)j = s
(j−1)
j .

3. If the check above passes, output s = (s1 + s2 + s3) mod 2ℓ. Else, abort.
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It is clear that RecSecret works as intended, given that each share is held by two parties
among which at least one is guaranteed to be honest, so, if the two reported shares
coincide, they have to be equal to the share held by the honest party.

Remark 5.3. This method can be optimized slightly by asking party Pi−1 to send si , while
party Pi sends H(si ), for each i ∈ [3], which is enough to check consistency of the an-
nounced shares.

5.4.2.2 Dealing Consistent Shares

As in Section 5.3.3.2, not every vector (s1, s2, s3) is consistent since there is a specific
replication that must hold among these values. Since a malicious client may distribute
an input inconsistently, the parties have to execute a protocol that checks the consis-
tency of these sharings. To this end, we could follow a similar approach to the one from
Section 5.3.3.2, in which the parties holding the supposedly same share talk to each other
to determine whether they received the same value. In our case, this would mean that if
each party Pi receives si = (s

(i)
i , s

(i)
i+1) from the client, then Pi would send s

(i)
i to Pi−1, who

checks that s(i)i = s
(i−1)
i , raising a complaint if this is not the case. However, the problem

with this approach is that a corrupt party may lie about the value it received from the
client, making an honest client look as if it distributed the value inconsistently.

To alleviate this issue, we take a different approach. We assume the existence of a broad-
cast channel between the client C and the parties. The parties also make use of the pro-
tocol ΠRand, which is presented later in Section 5.4.3.1, and generates shares of uniformly
random values.

Protocol ΠInput

Input: Client C has input x ∈ Z/2ℓZ.
Output: The parties output consistent shares JxKℓ
Protocol: The parties proceed as follows.

1. The parties call ΠRand to obtain JrKℓ.
2. The parties send their shares of JrKℓ to C .

3. C receives (r1, r2, r3) and calls RecSecret(r1, r2, r3) to either learn r or abort.

4. If C does not abort, C broadcasts e = x − r to the parties.

5. The parties compute locally JeKℓ ← JrKℓ + e .

The protocol clearly produces shares of x , where x = r + e . Furthermore, the parties
learn nothing about x since r is uniformly random and unknown to an party. With this
new approach, a corrupt party could cause an abort, for example, by sending incorrect
shares to the client, who aborts as part of the execution of RecSecret. However, even if
this happens, an honest client cannot be incorrectly flagged as corrupt, which is crucial
for the viability of an outsourced computation service in practice.
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Assumed Setup. We assume the existence of three uniformly random keys (k1, k2, k3),
such that, for each i ∈ [3], Pi has (ki , ki+1).

5.4.3 Required Subprotocols

We will need several subprotocols for our main secure computation protocol These are
described next.

5.4.3.1 Generating Shares of Random Values

We begin by describing a protocol for generating shares of uniformly random values
unknown to any party.

Protocol ΠRand

Output: The parties get consistent shares JrKℓ, where r ∈R Z/2ℓZ is uniformly random and
unknown to any party.
Protocol: For i ∈ [3], let ri = PRFki (id) ∈ Z/2ℓZ, where id is a unique ID associated to the
given protocol call. Each Pi outputs the share ri = (ri , ri+1).

It is easy to see that the non-interactive protocol works as intended: consistency is clear,
and the fact that r is uniformly random and unknown to any party holds from the fact
that r = r1 + r2 + r3, where each ri looks indistinguishable from random to any party
missing the key ki . Since each party misses one key, the claim follows.

5.4.3.2 Checking Equality to 0

For a specific part of our protocol it will be necessary for the parties to check that a given
shared value JxKℓ satisfies x ≡ℓ 0, without leaking anything about x beyond whether or
not this equality holds. This is achieved by the following protocol.

Protocol ΠCheckZero

Input: The parties hold consistent shares JxK
Output: The parties abort if x is not zero
Protocol:

1. For i ∈ [3], Pi sends zi = H(−(xi + xi+1)) to Pi−1.

2. For j ∈ [3], Pj checks that zj+1 = H(xj), and aborts if this is not the case.

Proposition 5.5. At the end of the execution ofΠCheckZero, the parties abort if x is not zero.
Furthermore, nothing is leaked about x .
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Proof. Since x = x1 + x2 + x3, if x 6= 0 then xj 6= −(xj+1 + xj+2) for each j ∈ [3]. Let i − 1
be the index of the corrupt party. The honest party Pi+1 sends zi+1 = H(−(xi+1 + xi+2))
to the honest party Pi , who checks if zi+1 = H(xi ). Since xi 6= −(xi+1 + xi+2), this check
will not pass, so the honest party Pi , and hence all the parties, abort.

Finally, to see privacy, we have to assume a stronger property of H which, informally,
states that “H(w) leaks nothing about w”. With this property we see that each Pi , upon
receiving zi+1 = H(−(xi+1+xi+2)) from Pi+1, learns nothing about −(xi+1+xi+2) besides
whether this value equals xi .

Formalizing the notion that H leaks nothing. As mentioned in the proof above, we do
not only need to assume that H is collision resistant, but also that H(w) leaks nothing
about its input w . This property is formalized by making use of the random oracle, a
standard tool in cryptography. To this end, we define H as a functionality that, upon
receiving the input w from a party, samples a uniformly random string r and returns this
string to the party performing the request. The functionality stores (w , r) internally, and
further calls on the same input w are answered using the same previously sampled string
r .

5.4.3.3 Secure Multiplication with Additive Errors

In this section we show how the parties can multiply two given shared values JxK andJyK. Unfortunately, our protocol will not enable the parties to obtain Jx · yK, but rather,
the adversary will be able inject a chosen additive error δ so that the final shares are
actually Jxy + δK. A corresponding functionality for this protocol would be formalized in
a similar way as the one from Section 4.2.

Protocol ΠMult

Input: The parties hold sharings JxK and JyK
Output: The parties obtain sharings Jxy + δK for some δ ∈ Z/2ℓZ chosen by the adversary.
Protocol: The parties proceed as follows:

1. Each party Pi for i ∈ [3] computes zi = xiyi + xiyi+1 + xi+1yi + (ri − ri+1), where
ri = PRFki (id) with id being a unique ID for the given protocol call, and sends zi to
party Pi−1.

2. The parties output the shares (z1, z2, z3), with zi = (zi , zi+1).

Proposition 5.6. After the execution of Protocol ΠMult the parties get shares Jxy + δK for
some δ chosen by the adversary. Furthermore, nothing is leaked about x or y .

Proof. Let i ∈ [3] be the index of the corrupt party. Let z ′i = zi + δ be the value this party
sends to Pi−1, where δ = (zi−z ′i ). The output of the parties would be consistent sharings
of

z = z ′i +
∑

j∈[3],j ̸=i

zj
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= δ +
3∑

j=1

zj

= δ +
3∑

j=1

(xjyj + xjyj+1 + xj+1yj + (rj − rj+1))

= δ +

3∑
j=1

(xjyj + xjyj+1 + xj+1yj) +
3∑

j=1

(rj − rj+1)

= δ + (x1 + x2 + x3)(y1 + y2 + y3) + 0

= xy + δ.

Now, in terms of privacy, we see that the message zi = xi+1yi+1 + xi+1yi+2 + xi+2yi+1 +
(ri+1 − ri+2) that Pi receives from Pi+1 indistinguishable from random to Pi given that
ri+2 = PRFki+2

(id) is indistinguishable from random to Pi since this party does not hold
the key ki+2.

Computing dot products securely. Similar to the protocol from Section 5.3.6, the three-
party protocolΠMult described above can be easily modified to securely compute JzK from
(Jx1K , ... , JxmK) and (Jy1K , ... , JymK), where z =

∑m
h=1 xhyh, with a cost that is independent

of m. The modification consists of the following:

1. Each party Pi for i ∈ [3] computes zi =
∑m

h=1(xhiyhi+xhiyh,i+1+xh,i+1yhi )+(ri−ri+1)
and sends zi to party Pi−1.

2. The parties output the shares (z1, z2, z3), with zi = (zi , zi+1).

On top of being useful for applications involving linear algebra, the ability to securely
compute dot products with a communication complexity that is independent of the di-
mension of the vectors is important for our main computation protocol described below.
This is because, in the verification stage of that protocol, the parties need to precisely
compute dot products on long secret-shared vectors.

5.4.4 Secure Computation Protocol

With the different tools presented in the previous section we are now ready to describe
our main secure computation protocol with abort for arithmetic circuits over Z/2kZ. At
a high level, the protocol consists by executing two copies of the same circuit, one with
the actual shared values of the circuit JxKk , and another with a “randomized” version of
these values Jr · xKk . As we will show, this will enable the parties to perform a check after
the circuit has been computed to ensure that no additive error was introduced in any of
the multiplication gates.

The approach sketched above is already present in the work of [30], which presents a
generic compiler that turns passively secure protocols over fields that are secure up to
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additive attacks into actively secure protocol with abort over the same domain. Over
the ring Z/2kZ this approach does not work directly, as it ultimately relies on equations
of the form a · x ≡k b not having many solutions in the variable x if a 6= 0, but over
Z/2kZ this type of equations can have a lot of solutions, which is the case for example
if a = 2k−1 and b = 0 since every even number is a solution. The main observation of
the original work of [4] is that the techniques from the original work of [32] can be used
to address this major complication, enabling the adaptation of the generic compilation
process from [30] to the setting of the ring Z/2kZ.

In short, the main tool from the original work of [32] used in our protocol from this
section consists of using replicated secret-sharing modulo 2k+κ, where κ is a statistical
security parameter, instead of working plainly modulo 2k . This way, cheating in multi-
plication gates can be prevented by showing that equations of the form a · x ≡k+κ b
where a 6≡k 0 have a limited number of solutions, which is indeed the case. We re-
mark that, chronologically, this core idea was first used in the original work of [32] in
the context of dishonest-majority secure computation for any number of parties, a set-
ting that is discussed in Chapter 6 of this thesis. As pointed out above, it was in the
original work of [4] that this idea was used, together with the techniques from [30], to
obtain a generic passive-to-active compiler. The complications that arise when follow-
ing this route, and the non-trivial steps required to obtain such compiler, are thoroughly
documented in [4]. We recall that in this section we focus only on the concrete case of
replicated secret-sharing for three parties.

For our protocol below we assume that the arithmetic circuit over Z/2kZ to be computed
ismade ofM input gates andN multiplication gates. Furthermore, given that our protocol
is set in the client-server model of secure computation, we assume that the parties start
the execution holding shares of the inputs to the computation, which are distributed by
the different clients. These sharings are set modulo 2k+κ, even though the underlying
shared values lie in Z/2kZ, and they are distributed by the different clients by executing
together with the parties the protocol ΠInput from Section 5.4.2.2. Below, we let M and M
be the number of input and multiplication gates, respectively, in the circuit.

Protocol ΠMPC

Inputs: The parties have shares Jv1Kk+κ , ... , JvMKk+κ of the inputs to the computation.
Protocol: The parties proceed as follows

1. Generate randomizing shares: The parties call ΠRand to receive JrKk+κ, where r ∈R
Z/2k+κZ.

2. Randomization of inputs: For each input wire sharing JvmKk+κ (where m ∈ [M]) the
parties call ΠMult on JrKk+κ to receive Jr · vmKk+κ.

3. Circuit emulation: The parties traverse over the circuit in topological order. For each
gate the parties work as follows:
• Addition gates: Given tuples

(JxKk+κ , Jr · xKk+κ

)
and

(JyKk+κ , Jr · yKk+κ

)
on

the left and right input wires respectively, the parties locally compute(Jx + yKk+κ , Jr · (x + y)Kk+κ

)
.

• Multiplication gates: Given tuples
(JxKk+κ , Jr · xKk+κ

)
and

(JyKk+κ , Jr · yKk+κ

)
on

the left and right input wires respectively:
a) The parties call ΠMult on JxKk+κ and JyKk+κ to receive Jx · yKk+κ.
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b) The parties call ΠMult on Jr · xKk+κ and JyKk+κ to receive Jr · x · yKk+κ. The
adversary can introduce additive errors in these two calls.

4. Verification stage: Let
{(JziKk+κ , Jr · ziKk+κ

)}N
i=1

be the tuples on the output wires
of all multiplication gates and let

{JvmKk+κ , Jr · vmKk+κ

}M
m=1

be the tuples on the
input wires of the circuit.
a) For m = 1, ... ,M , the parties call ΠRand to receive JβmKk+κ.
b) For i = 1, ... ,N , the parties call ΠRand to receive JαiKk+κ.
c) Compute linear combinations:

i. The parties call ΠMult on (Jα1Kk+κ , ... , JαNKk+κ , Jβ1Kk+κ , ... , JβMKk+κ) and
(Jr · z1Kk+κ , ... , Jr , ·zNKk+κ , Jr · v1Kk+κ , ... , Jr · vMKk+κ) to obtain JuKk+κ

with u =
∑N

i=1 αi · (r · zi ) +
∑M

m=1 βm · (r · vm).
ii. The parties call ΠMult on (Jα1K , ... , JαNK , Jβ1K , ... , JβMK) and

(Jz1Kk+κ , ... , JzNKk+κ , Jv1Kk+κ , ... , JvMKk+κ) to obtain JwKk+κ, where
w =

∑N
i=1 αi · zi +

∑M
m=1 βm · vm.

d) The parties broadcast their shares of JrKk+κ and call RecSecret on these to
reconstruct r .

e) The parties locally compute JT Kk+κ ← JuKk+κ − r · JwKk+κ.
f) The parties call ΠCheckZero on JT Kk+κ.

5. Output reconstruction: If the parties did not abort in the call to ΠCheckZero,
then, for each output wire of the circuit with JvKk+κ, the parties locally convertq
v mod 2k

y
k
← JvKk+κ. Then, they send their shares of

q
v mod 2k

y
k
to the clients.

Now we analyze the security of the protocolΠMPC. We recall that our focus in this chapter
is more of a practical nature, focusing on practical secure multiparty computation for a
small number of parties, and as such we do not provide full simulation-based proofs of
security, as done with the other protocols presented so far in this chapter.

Privacy of the protocol before the output reconstruction stems from the fact that all
intermediate values are secret-shared, and the only subprotocol called on sensitive data
is ΠMult, which, as argued in Proposition 5.6, preserves the privacy of the inputs. From
this, a simulator can be defined in a straightforward manner, and this is done in the full
version of the original work [4].

The main complication, however, lies in showing that, if the adversary cheats in any mul-
tiplication gate by introducing an additive error, then the parties abort. Notice that, since
the computation is carried out modulo 2k+κ, but correctness is only required modulo 2k

since this is the original modulus of the arithmetic circuit, an additive error δ ∈ Z/2k+κZ
satisfying δ ≡k 0 does not have any harmful effect in the correctness of computation;
in other words, if only additive errors that are zero modulo 2k are introduced, then the
computation is correct. On the other hand, if there is at least one error that is not zero
modulo 2k , this would potentially affect the correctness of the computation, which would
ultimately make simulation impossible.

The following lemma addresses the situation in which the adversary introduces an ad-
ditive error that is not zero modulo 2k in at least one of the calls to ΠMult, showing that
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in this case, the check performed by the parties in the verification stage results in abort
with overwhelming probability in the security parameter κ.

Lemma 5.1. If the adversary adds an error d 6≡k 0 in any of the calls to ΠMult in the
execution of Protocol ΠMPC, then the value T computed in the verification stage equals 0
with probability upper-bounded by 2−κ+log(κ+1). In other words, the parties abort with
probability at least 1− 2−κ+log(κ+1).

Proof. Suppose that (JxiKk+κ , JyiKk+κ , JziKk+κ) is the multiplication triple corresponding
to the i-th multiplication gate, where JxiKk+κ , JyiKk+κ are the sharings on the input wires
and JziKk+κ is the sharing on the output wire. We note that the values on the input wires
may not actually be the appropriate values as when the circuit is computed by honest
parties. However, in the verification step, each gate is examined separately, and all that is
important is whether the randomized result is Jr · ziKk+κ for whatever zi is here (i.e., even
if an error was added by the adversary in previous gates). By Proposition 5.6, a malicious
adversary is able to carry out an additive attack in the calls to ΠMult, meaning that it can
add a value to the output of each multiplication gate.

We denote by δi ∈ Z/2k+κZ the value that is added by the adversary when ΠMult is called
with JxiKk+κ and JyiKk+κ, and by γi ∈ Z/2k+κZ the value added by the adversary when
ΠMult is called with the shares JyiKk+κ and Jr · xiKk+κ. However, it is possible that the ad-
versary has attacked previous gates and so JyiKk+κ is actually multiplied with Jr · xi + ϵiK,
where the value ϵi ∈ Z/2k+κZ is an accumulated error from previous gates.7 Thus, it
holds that zi = xi · yi + δi , and the shared value the parties obtain as part of the random-
ized version of zi is J(r · xi + ϵi ) · yi + γiK. Similarly, for each input wire with sharing JvmK,
it holds that the parties compute sharings Jr · vm + ξmK, where ξm ∈ Z/2k+κZ is the value
added by the adversary when ΠMult is called with JrKk+κ and the shared input JvmKk+κ.

Thus, we have that the shared values JuK and JvK computed in step 4c of the protocol
are equal to

u =

N∑
i=1

αi · ((r · xi + ϵi ) · yi + γi )

+

M∑
m=1

βm · (r · vm + ξm) + Θ1

w =
N∑
i=1

αi · (xi · yi + δi ) +
M∑

m=1

βm · vm +Θ2

where Θ1 ∈ Z/2k+κZ and Θ2 ∈ Z/2k+κZ are the values being added by the adversary
when ΠMult is called in the verification step. From this, the shared value JT K computed
in step 4e is equal to

T = u − r · w =

7Although attacks in previous gates may be carried out on both multiplications, the idea is here is to fix
xi which is shared by JxiKk+κ at the current value on the wire, and then given the randomized sharingJx ′

i Kk+κ, define ϵi = x ′
i − r · xi as the accumulated error on the input wire.
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=

N∑
i=1

αi · ((r · xi + ϵi ) · yi + γi ) +

M∑
m=1

βm · (r · vm + ξm) + θ1

− r ·

(
N∑
i=1

αi · (xi · yi + δi ) +

M∑
m=1

βm · vm +Θ2

)

=

N∑
i=1

αi · (ϵi · yi + γi − r · δi ) (5.1)

+

M∑
m=1

βm · ξm + (Θ1 − r ·Θ2),

where the second equality holds because r is opened and so the multiplication r ·JwKk+κ

always yields Jr · wKk+κ, i.e. no additive error can be injected in this step. Let ∆i =
ϵi · yi + γi − r · δi .

Our goal is to show that T , as shown in Eq. (5.2), equals 0 with probability at most
2−κ+log(κ+1). We have the following cases.

• Case 1: There existsm ∈ [M] such that ξm 6≡k 0. Letm0 be the smallest suchm for which
this holds. Then T ≡k+κ 0 if and only if

βm0 · ξm0 ≡k+κ

− N∑
i=1

αi ·∆i −
M∑

m=1
m ̸=m0

βm · ξm − (Θ1 − r ·Θ2)

 .

Let 2u be the largest power of 2 dividing ξm0 . Then we have that

βm0 ≡k+κ−u

−
∑N

i=1 αi ·∆i −
∑M

m=1
m ̸=m0

βm · ξm − (Θ1 − r ·Θ2)

2u

 · (ξm0

2u

)−1

.

By the assumption that ξm 6≡k 0 it follows that u < k and so k+κ−u > κ which means
that the above holds with probability at most 2−κ, since βm0 is uniformly distributed
over Z/2k+κZ.

• Case 2: All ξm ≡k 0. By the assumption in the lemma, some additive value d 6≡k 0
was sent to ΠMult. Since none was sent for the input randomization, there exists some
i ∈ {1, ... ,N} such that δi 6≡k 0 or γi 6≡k 0. Let i0 be the smallest such i for which this
holds. Note that since this is the first error added which is 6≡k 0, it holds that ϵi0 ≡k 0.
Thus, in this case, T ≡k+κ 0 if and only if αi0 ·∆i0 ≡k+κ Y , where

Y =

− N∑
i=1
i ̸=i0

αi ·∆i −
M∑

m=1

βm · ξm − (Θ1 − r ·Θ2)

 .

Let q be the random variable corresponding to the largest power of 2 dividing∆i0 , where
we define q = k+κ in the case that∆i0 ≡k+κ 0. Let E denote the event αi0 ·∆i0 ≡k+κ Y .
We have the following claims.
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– Claim 1: For k < j ≤ k + κ, it holds that Pr[q = j ] ≤ 2−(j−k).

To see this, suppose that q = j and j > k . It holds then that∆i0 ≡j 0, and so∆i0 ≡k 0.
We first claim that in this case it must hold that δi0 6≡k 0. Assume in contradiction
that δi0 ≡k 0. In addition, by our assumption we have that γi0 6≡k 0, ϵi ≡k 0 and
∆i0 = ϵi0 · yi0 + γi0 − r · δi0 ≡k 0. However, ϵi · yi0 ≡k 0 and r · δi0 ≡k 0 imply that
γi0 ≡k 0, which is a contradiction.

We thus assume that δi0 6≡k 0, and in particular there exists u < k , such that u is
the largest power of 2 dividing δi0 . It is easy to see then that q = j implies that
r ≡j−u

(
ϵi0 ·yi0+γi0

2u

)
·
(
δi0
2u

)−1
. Since r ∈ Z/2k+κZ is uniformly random and u < k , we

have that this equation holds with probability of at most 2−(j−u) ≤ 2−(j−k).

– Claim 2: For k < j < k + κ it holds that Pr[E | q = j ] ≤ 2−(k+κ−j).

To prove this let us assume that q = j and that E holds. In this case we can write
αi0 ≡k+κ−j

Y
2j
·
(
∆i0

2j

)−1
. For k < j < k + κ it holds that 0 < k + κ − j < κ and

therefore this equation can be only satisfied with probability at most 2−(k+κ−j), given
that αi0 ∈ Z/2κZ is uniformly random.

– Claim 3: Pr[E | 0 ≤ q ≤ k ] ≤ 2−κ.

This is implied by the proof of the previous claim, since in the case that q = j with
0 ≤ j ≤ k , it holds that k + κ− j ≥ κ, so the event E implies that αi0 ≡κ

Y
2j
·
(
∆i0

2j

)−1
,

which holds with probability at most 2−κ.

Putting these pieces together, we thus have the following:

Pr [E ] = Pr [E | 0 ≤ q ≤ k ] · Pr[0 ≤ q ≤ k ] +
k+κ∑

j=k+1

Pr [E | q = j ] · Pr[q = j ]

≤ 2−κ + κ · 2−κ = (κ+ 1) · 2−κ = 2−κ+log(κ+1). (5.2)

To sum up the proof, in the first case we obtained that T = 0 with probability of at
most 2−κ whereas in the second case, this holds with probability of at most 2−κ+log(κ+1).
Therefore, we conclude that the probability that T = 0 in the verification step is bounded
by 2−κ+log(κ+1) as stated in the lemma. This concludes the proof.

From this lemma it is straightforward to prove the following result, whose complete proof
is presented in the full version of the original work [4].

Theorem 5.5. Protocol ΠMPC securely instantiates the FMPC functionality with abort with
statistical error 2−κ+log(κ+1), in the presence of a malicious adversary controlling t < n

2
parties.
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Chapter 6

SPDZ2k: Dishonest Majority MPC over Z/2kZ

Multiparty Computation in the context in which the adversary controls at least half of
the parties is extremely relevant in practice. For example, in many settings assuming
that the majority of the parties remain honest may not be sensible. This could be the
case for instance if there is little diversification among the parties executing the protocol
(for example, several parties are hosted in the same data center, or administered by the
same entity), or it could also happen if the number of parties is very low. For example, if
only two parties are considered, the only scenario that makes sense in this in which the
adversary corrupts exactly one party, which does not constitute a minority.

As illustrated in Section 1.3.3, in spite of the advantages that MPC in the dishonest ma-
jority setting may have, such protocols come at a costly price in terms of efficiency and
security guarantees. More precisely, unlike the constructions presented in Chapters 3
and 4 the previous chapter, protocols that are secure against a majority of corrupt par-
ties must rely on computational assumptions, instead of guaranteeing security in the
information-theoretic sense. On the other hand, partially implied by the above, these
protocols tend to be much more inefficient than their honest majority counterparts. Un-
fortunately, as illustrated in the previous paragraph, several scenarios and use cases for
MPC cannot afford to assume an honest majority, so improving the efficiency of dishon-
est majority protocols is a worthy goal with multiple implications in the applicability of
MPC in practice.

In Sections 2.6 and 2.7 we presented different techniques for dishonest majority multi-
party computation over fields, with passive and active security respectively. These pro-
tocols operated over fields, and, in fact, for the case of active security, this is a crucial
aspect of their design, as we will see soon.1 The goal of this chapter is to develop a
protocol for computation modulo 2k by extending these ideas over fields, to the case in
which the algebraic structure is the ring Z/2kZ. Our work, like the protocols presented in
Sections 2.6 and 2.7, are set in the preprocessing model, which means that the execution
of the protocol can be split into two phases: and offline phase, independent of the actual
inputs from the participants, and an online phase, which depends on these inputs and
tends to be much leaner.

This chapter is organized as follows. First, in Section 6.1 we recall the arithmetic black-
box model, which is an alternative way of representing arithmetic circuits in a more flex-
ible way, more compatible with reactive computation. Then, in Section 6.2, we show
1The passively secure protocol as presented in Section 2.6 is ported in a straightforward manner not only
to the ring Z/2kZ, but to any finite ring.
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how to reduce the arithmetic black-box functionality to a simpler functionality that, in
essence, does not support multiplications, but provides the ability to preprocess mul-
tiplication triples. This is simply a presentation of Beaver’s results [15]. In Section 6.3
we then present the main building block and contribution of this Chapter: an authenti-
cated secret-sharing scheme that supports homomorphic operations modulo 2k , and we
finally show in Section 6.4 how to use this construction to instantiate the partial arith-
metic black-box model, assuming access to multiplication triples.

The results in this chapter are based on the original work of [32], which presents SPDZ2k
(or SPDZ2k ), the first actively secure protocol over Z/2kZ in the dishonest majority set-
ting. The contributions of that work can be summarized as follows. First, the authors
present an authenticated secret-sharing scheme that is homomorphic modulo 2k and
enables the parties to reconstruct values correctly. This is one of the core contributions
of that work, and these techniques have proven useful in other dishonest majority proto-
cols like [69] and [26], and even other settings like honest majority as in the original work
of [4], which was partially described in Section 5.4. The second contribution of [32] lies
in the generation of the necessary preprocessing material to enable secure computa-
tion using the secret-sharing scheme mentioned above. This preprocessed data consists
mostly of (authenticated) multiplication triples, and their generation is done with the
help of Oblivious Transfer, in a way that resembles the triple generation procedure from
the MASCOT protocol [62]. In this thesis we only discuss the first part, namely, the au-
thenticated secret-sharing scheme and the method to reconstruct shares correctly. We
do not include the generation of the multiplication triples using oblivious transfer, which
is presented in the original work of [32].

Finally, we also point out that the SPDZ2k protocol was implemented in the subsequent
work of [44], presented by the author of this thesis at S&P 2019. That work presents a
series of applications of this protocol and illustrate its benefits with respect to other
field-based constructions, and it also introduces different primitives for enabling these
applications.

6.1 Arithmetic Black Box

We begin by recalling the arithmetic black-box model, or ABB model, for short, which
was briefly discussed in Section 1.2.6.2. In this framework, which is formalized as the
functionality FABB below, the parties have the ability of storing inputs that remain pri-
vate, and they can instruct the functionality to perform basic operations on stored data
like multiplications and linear affine combinations, with these computations carried out
modulo 2k . Furthermore, at any point, the parties altogether can instruct the functional-
ity to open any stored value, making it public to all the parties. This way, the ABB model
poses a generalization of the arithmetic circuit model of computation, except that the
ABB model fits better the setting of reactive computation as considered in Section 1.1,
where parties learn intermediate results of the computation and then continue with sub-
sequent stages, perhaps inputting new data that might depend on the results learned
so far by the parties.

We remark that almost all of the protocols described so far in this thesis can be phrased
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in the ABB model rather than the arithmetic circuit model, and as a result, they can
also be used for secure reactive computation. The only exception is the three-party
protocol from Section 5.4, which, when reconstructing the output, requires the parties to
reconstruct the “key” JrK, which cannot be reused for further computation. This protocol
is modified to enable reactive computation in the original work of [36].

We now proceed to presenting formally the functionality FABB. This functionality keeps
an internal dictionary of values stored by the parties, and performs operations on these
as instructed. Also, notice that the commands are issued by the honest parties only, and
the functionality, upon executing these commands, notifies the adversary about their
success. This is done in order to facilitate simulation later on, since the adversary’s role
will be played by the simulator, who needs to be informed about the different com-
mands being executed by the functionality FABB being instantiated in order to emulate
the protocol execution. Details of this are given in Section 6.2.

Functionality FABB: Arithmetic Black Box

The functionality proceeds as follows.

• On input (input, id, i) from the honest parties, send (input, id, i) to the adversary,
wait for input (value, id, x) from party Pi , where x ∈ Z/2kZ, and then store (id, x) in
memory.

• On input (comb, {ci}ℓi=0, {idi}i∈[ℓ], idℓ+1) from the honest parties, retrieve (idi , xi ) for
i ∈ [ℓ] from memory and store (idℓ+1, z), where z = (c0 +

∑ℓ
i=1 cixi ) mod 2k . Then

send (comb, {ci}ℓi=0, {idi}i∈[ℓ], idℓ+1) to the adversary.

• On input (mult, id1, id2, id3) from the honest parties, retrieve (id1, x) and (id2, y)
from memory and store (id3, z), where z = x · y . Then send (mult, id1, id2, id3) to
the adversary.

• On input (open, id) from the honest parties, retrieve (id, x) from memory and send
x to all the parties. Then send (open, id) to the adversary.

6.2 InstantiatingFABB in theFPABB-Hybrid Model

Now we present an alternative functionality that we call partial arithmetic black box,
or PABB for short, which is like FABB, except it lacks the (input) and (mult) commands.
Instead, it counts on some additional commands for storing values with certain structure,
like random values and multiplication triples, plus other helper commands, as we will
see below.

Functionality FPABB: Partial Arithmetic Black Box

The functionality proceeds as follows.

• On input (random, id) from the honest parties, sample r ∈R Z/2kZ and store (id, r)
in memory. Then send (random, id) to the adversary

• On input (triple, id1, id2, id3) from the honest parties, sample a, b ∈R Z/2kZ and
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store (id1, a), (id2, b) and (id3, c = ab) in memory. Then send (triple, id1, id2, id3) to
the adversary

• On input (open.ind, id, i) from the honest parties, retrieve (id, x) from memory and
send x to all the parties. Then send (open.ind, id, i) to the adversary

• On input (comb, {ci}ℓi=0, {idi}i∈[ℓ], idℓ+1) from the honest parties, retrieve (idi , xi ) for
i ∈ [ℓ] from memory and store (idℓ+1, z), where z = (c0 +

∑ℓ
i=1 cixi ) mod 2k . Then

send (comb, {ci}ℓi=0, {idi}i∈[ℓ], idℓ+1) to the adversary.

• On input (open, id) from the honest parties, retrieve (id, x) from memory and send
x to all the parties. Then send (open, id) to the adversary.

Notice that the commands below the dashed line in the description of FPABB, namely
(comb) and (open), are already present in the functionalityFABB, whereas the ones above
the dashed line are new commands. The motivation behind considering the functionality
FPABB is that this functionality is enough to instantiate FABB, and it is simpler as it does
not include the (mult) command which, as usual with secure multiparty computation
protocols, tends to be the bottleneck. Instead, it includes the (triple) command which
stores multiplication triples, and this type of preprocessing material will be much simpler
to generate.

Furthermore, and most importantly, FPABB can be instantiated with the construction of
authenticated secret-sharing we will discuss in Section 6.3. This secret-sharing scheme
enables the parties to store data in a distributed fashion, take linear affine combina-
tions modulo 2k , and later on open the shared values in a way that the adversary can-
not cheat in the reconstruction. As a result, the commands (comb) and (open) (and
also (open.ind)) can be easily instantiated. The necessary preprocessing material like
multiplication triples and random shared values, that is, the instantiation of the com-
mands (triple) and (random), is done in a trivial way by assuming a functionality that
distributes shares with the required distribution under the secret-sharing scheme dis-
cussed above.

The instantiation of FPABB using our authenticated secret-sharing scheme in the pre-
processing model is discussed in full detail in Section 6.4. For now, we present below
the protocol ΠABB, which instantiates the functionality FABB in the FPABB-hybrid model.
As sketched above, this allows us to focus only on instantiating FPABB in subsequent
sections.

Protocol ΠABB

Functionalities: FPABB.
Protocol: The parties proceed as follows.

• Upon receiving the commands (comb) and (open), the parties forward these to
FPABB.

• Upon receiving the command (input, id, i), and Pi receiving input (value, id, x), the
parties execute the following
1. Call FPABB with the command (random, idr ).
2. Call FPABB with the command (open.ind, idr , i), so Pi obtains r ∈ Z/2kZ from
FPABB.
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3. Pi broadcasts e = x − r to all parties
4. Call FPABB on input (comb, {e, 1}, {idr}, id).

• Upon receiving the command (mult, id1, id2, id3), the parties execute the following
1. Call FPABB with the command (triple, id′1, id

′
2, id

′
3). This results in FPABB storing

(id′1, a), (id
′
2, b) and (id′3, c), where c = a · b.

2. Call FPABB with the commands (comb, {0, 1,−1}, {id1, id′1}, id
′′
1) and

(comb, {0, 1,−1}, {id1, id′1}, id
′′
1).

3. Call FPABB on inputs (open, id′′1) and (open, id′′2), so the parties obtain d and e ,
where FPABB has stored (id′′1 , d) and (id′′2 , e).

4. Call FPABB with the command (comb, {d · e, e, d , 1}, {id′1, id
′
2, id

′
3}, id3).

Proposition 6.1. Protocol ΠABB instantiates the functionality FABB with perfect security in
the FPABB-hybrid model.

Proof. The simulator S is defined as follows. S is in charge of emulating virtual honest
parties P i for i ∈ H, and also the functionality FPABB.

• Upon receiving (comb, ⋆) or (open, ⋆) from FABB, S emulates FPABB being called on
these inputs by the virtual honest parties.

• Upon receiving (input, id, i) fromFABB, S proceeds as follows depending on the value
of i .

– If i ∈ H, then S emulates FPABB as follows:
1. EmulateFPABB with the command (random, idr ) from the virtual honest par-
ties.

2. Emulate FPABB with the command (open.ind, idr , i) from the virtual honest
parties.

3. Sample e ∈ Z/2kZ uniformly at random and send it in the emulated broad-
cast channel.

4. Emulate FPABB on input (comb, {e, 1}, {idr}, id) from the virtual honest par-
ties.

– If i ∈ C, then S emulates FPABB as follows:
1. EmulateFPABB with the command (random, idr ) from the virtual honest par-
ties.

2. Emulate FPABB with the command (open.ind, idr , i) from the virtual honest
parties. Then sample r ∈R Z/2kZ and send it to the corrupt party Pi .

3. S receives e from Pi in the emulated broadcast channel. Then S sends
(input, id, x) to FABB, where x = e + r .

4. Emulate FPABB on input (comb, {e, 1}, {idr}, id).
• Upon receiving (mult, id1, id2, id3) from FABB, S proceeds as follows
1. EmulateFPABB with the command (triple, id′1, id

′
2, id

′
3) from the virtual honest par-

ties.
2. Emulate FPABB with the commands (comb, {0, 1,−1}, {id1, id′1}, id

′′
1) and

(comb, {0, 1,−1}, {id1, id′1}, id
′′
1).

3. Emulate FPABB on inputs (open, id′′1) and (open, id′′2) by sampling uniformly ran-
dom values d , e ∈R Z/2kZ and sending these to the corrupt parties.

4. Emulate FPABB with the command (comb, {de, e, d , 1}, {id′1, id
′
2, id

′
3}, id3).
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We now argue indistinguishability between the real and ideal worlds. First we approach
the case in which commands (comb) or (open) are issued. In this case, indistinguisha-
bility is trivially achieved given that in the ideal world these calls are handled by FABB,
and in the real world they are handled by FPABB, which behave in the exact same way.

Now we analyze the case in which the command (input, id, i) is issued by the honest
parties.

Real world Ideal world
1. The honest parties call FPABB with the com-

mand (random, idr ), so FPABB stores (idr , r)
where r ∈R Z/2kZ, and the adversary receives
(random, idr ).

1. The adversary receives (random, idr ) from S as
part of the emulation of FPABB.

2. The honest parties call FPABB with the
command (open.ind, idr , i), so the party
Pi receives r and the adversary receives
(open.ind, idr , i).

2. The adversary also receives (random, idr ) from
S as part of the emulation of FPABB, and if Pi

is corrupt, this party also receives a uniformly
random value r ∈R Z/2kZ, as in the real world.

3. The party Pi broadcasts e = x − r . 3. If Pi is corrupt, since the execution is indistin-
guishable so far, the e broadcasted in the ideal
world follows the same distribution as e . If Pi

is honest, then e looks uniformly random to
the adversary since r is uniformly random and
known only to Pi . This is the same distribution
as the value e received by the adversary in the
ideal world.

4. The honest parties call FPABB with the com-
mand (comb, {e, 1}, {idr}, id), and the ad-
versary receives (comb, {e, 1}, {idr}, id). The
functionality FPABB stores (id, z), where z =
e + 1 · r . If i ∈ H, this input z is equal to x ,
the value received by Pi initially. If i ∈ C, then
z simply corresponds to e+ r , with r being the
value received and e the value broadcasted by
Pi .

4. The adversary also receives
(comb, {e, 1}, {idr}, id) from S as part of
the emulation of FPABB. Furthermore, the
functionality FABB stored (id, z). If i ∈ H, z is
equal to x , the value received by Pi initially, as
in the real world. If i ∈ C, then z corresponds
to e + r , with r being the value received and
e the value broadcasted by Pi . These are
indistinguishable from the corresponding
values in the real world.

It only remains to be seen that the two worlds remain indistinguishable when the com-
mand (mult, id1, id2, id3) is issued. This is shown below.

Real world Ideal world
1. The honest parties call FPABB with the com-

mand (triple, id′1, id′2, id′3), so FPABB samples
a, b ∈R Z/2kZ and stores (id′1, a), (id′2, b) and
(id′3, c), where c = a · b. Also, the adversary
receives (triple, id′1, id′2, id′3) from FPABB.

1. The adversary also receives
(triple, id′1, id′2, id′3) from S as part of the
emulation of FPABB.
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2. The honest parties call FPABB with the com-
mands (comb, {0, 1,−1}, {id1, id′1}, id′′1 ) and
(comb, {0, 1,−1}, {id1, id′1}, id′′1 ). This results
in FPABB storing (id′′1 , d) and (id′′2 , e), where
d = x − a and e = y − b, where FPABB has
stored (id1, x) and (id2, y). Finally, the adver-
sary gets (comb, {0, 1,−1}, {id1, id′1}, id′′1 ) and
(comb, {0, 1,−1}, {id1, id′1}, id′′1 ) from FPABB.

2. The adversary also receives
(comb, {0, 1,−1}, {id1, id′1}, id′′1 ) and
(comb, {0, 1,−1}, {id1, id′1}, id′′1 ) from S
as part of the emulation of FPABB.

3. The honest parties call FPABB on inputs
(open, id′′1 ) and (open, id′′2 ), so all parties learn
d and e , and the adversary gets (open, id′′1 )
and (open, id′′2 ). Notice d = x − a and e =
y − b look uniformly random to the adversary
since a, b ∈R Z/2kZ are uniformly random and
never revealed to the adversary.

3. The adversary also gets (open, id′′1 ) and
(open, id′′2 ) from the emulated FPABB. Addi-
tionally, the parties learn uniformly random
values d , e ∈R Z/2kZ, which follows the same
distribution as the real world.

4. The honest parties call FPABB with the com-
mand (comb, {d ·e, e, d , 1}, {id′1, id′2, id′3}, id3),
so FPABB stores (id3, z), where z = de + ea +
db + 1 · c = x · y , and it sends (comb, {d ·
e, e, d , 1}, {id′1, id′2, id′3}, id3) to the adversary.

4. The adversary also receives (comb, {d ·
e, e, d , 1}, {id′1, id′2, id′3}, id3) from S as part of
the emulation ofFPABB. Furthermore, the func-
tionality FABB stored (id3, xy), which is the
same entry stored by FPABB in the real world.

6.3 Authenticated Secret-Sharing

In this section we present the main tool to instantiate the “storing” capabilities of
FABB/FPABB, and the ability to perform affine linear combinations modulo 2k on stored
data. This is achieved by means of am authenticated secret-sharing scheme that is used
to distribute values in Z/2kZ with homomorphism over this ring. The authenticated part
refers to the fact that the parties have some additional data that prevents the adversary
to reconstruct incorrect secrets, this ensuring authenticity of the underlying data. Below
we will present the construction of an authenticated secret-sharing scheme, that lies at
the heart of our main protocol. We also state and prove various basic properties of the
scheme that are used later on in Section 6.4 when we formally instantiate FPABB in the
preprocessing model.

As we will see, this construction closely resembles the one from Section 5.4.4, although
chronologically, the core idea of working over Z/2kZ to obtain authenticated secret-
sharing over Z/2kZ appeared first in the original work of [32], and was used as a building
block in the original work of [4], upon which the protocol from Section 5.4.4 is based
on. These techniques have also been used in other works not involving the author of the
thesis, like [69] and [26]. Also, to further highlight the differences between the techniques
used in this section and the ones from Section 5.4.4, we remark that in the latter the use of
this construction serves the purpose of disallowing additive attacks in the multiplication
gates, and there, reconstructing secret-shared values was not a problem due to the use
of replicated secret-sharing, which enabled error detection. In our current setting, as
common in the dishonest majority case, we need to ensure the adversary cannot cheat
when reconstructing secret-shared values, which a task of a different nature.
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As in Section 5.4, given two integers x , y ∈ Z we use x ≡ℓ y to denote x ≡ y mod 2ℓ.
Given s ∈ Z/2ℓZ, we denote by JsKℓ = (s1, ... , sn) additive secret-sharing over Z/2ℓZ,
that is, s1, ... , sn ∈ Z/2ℓZ are uniformly random constrained to s ≡ℓ

∑n
i=1 si . Notice that

the parties can locally reduce their additive shares modulo 2h for any h ≤ ℓ to obtainq
s mod 2h

y
h
, a local operation that is denoted by

q
s mod 2h

y
h
← JsKℓ.

Definition 6.1 (Authenticated secret-sharing). Let s ∈ Z/2ℓZ. We say that the parties hold
authenticated shares of s if the following holds.

Additive shares of key. Each Pi has a global2 uniformly random value αi ∈R Z/2ℓZ. Let
α =

∑n
i=1 αi mod 2ℓ.

Additive shares of s . Each Pi has si ∈ Z/2ℓZ such that
∑n

i=1 si ≡ℓ s

Additive shares of α · s . Each Pi has γi ∈ Z/2ℓZ such that
n∑

i=1

γi ≡ℓ

(
n∑

i=1

si

)
·

(
n∑

i=1

αi

)
.

The above can be denoted as 〈s〉ℓ = (JsKℓ , Jα · sKℓ , JαKℓ). When clear from context, we
will omit the ℓ subindex.

Observe that this scheme is essentially the same as the one presented in Section 2.7.2 in
the context of finite fields, except that, unfortunately, this scheme will not ensure that
the adversary cannot cheat in the reconstruction of the shared value 〈s〉, causing the
parties to reconstruct a result s ′ with s ′ 6≡ℓ s . This makes this construction insufficient to
obtain MPC protocols over Z/2ℓZ, similar to the reason why the passively secure protocol
from Section 2.6 is not actively secure: the adversary can cheat in the output gates—and
also in the multiplication gates—by reconstructing values incorrectly. However, as we will
soon see, by setting ℓ = k + κ we will be able to show that the adversary cannot cause
the reconstructed value s ′ to satisfy s ′ 6≡k s with probability better than (roughly) 2−κ.
That is, even though it could be the case that s ′ 6≡k+κ s , it will hold with overwhelming
probability that s ′ ≡k s , or, in other words, the lower k bits of s will be correct upon
reconstruction. This turns out to be pivotal for the construction of an MPC protocol over
Z/2kZ.

Local Operations. The parties can make use of the basic homomorphic properties of
additive secret-sharing J·Kℓ to perform local operations with the scheme 〈·〉ℓ. More pre-
cisely, given 〈x〉ℓ = (JxKℓ , Jα · xKℓ , JαKℓ) and 〈y〉ℓ = (JyKℓ , Jα · yKℓ , JαKℓ) and a publicly
known value c ∈ Z/2ℓZ, the parties can locally compute 〈x ± y〉, 〈c · x〉 and 〈x ± c〉 as
follows:

• 〈x ± y〉 = (JxK± JyK , Jα · xK± Jα · yK , JαK)
• 〈c · x〉 = (c · JxK , c · Jα · xK , JαK)

2The term global refers to the fact that this part of the sharings do not change from one shared value to
another.
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• 〈x ± c〉 = (JxK± c , Jα · xK± JαK · c , JαK)
6.3.1 Simultaneous Broadcast

Before we dive into the description of the method for the parties to reconstruct secret-
shared values while ensuring the lower k bits are correct, we enhance the broadcast
channel assumed by default into what we call a simultaneous broadcast channel. This
is used in a scenario where each party Pi is supposed to broadcast a value to the other
parties. To this end, the parties could make use of the underlying broadcast channel
n times, one for each sender Pi . However, in the context within our protocol where all
parties need to broadcast data, it is imperative that the corrupt parties do not see the
values broadcasted by honest parties before they broadcast theirs, and the approach
above does not prevent this since the adversary, which is ultimately modeled by the
environment in the setting of UC security, can schedule the calls to the broadcast channel
in any order.

A simultaneous broadcast channel is designed precisely to disallow the behavior de-
scribed above. In such a channel each party broadcasts its given value “at the same
time”, without seeing the values sent by other parties. This is formalized by means of a
functionality that operates as follows:

Simultaneous Broadcast Functionality

1. It receives a value xi from each party Pi .

2. Once all parties have provided their input, the functionality sends (x1, ... , xn) to all
parties.

In order to instantiate a simultaneous broadcast channel assuming only access to the
usual broadcast channel where each party individually can broadcast a value separately,
we can follow a rather standard approach in the literature known as “commit-and-open”,
which is already briefly discussed in Section 2.7.2.1. In a nutshell, this consists of the par-
ties first broadcasting a commitment to each of their to-be-broadcasted messages, which
is a bit-string that “binds” the parties to the specific value they wish to send, followed
by a round of the parties broadcasting the actual messages, which is only executed after
all the commitments have been received. This way, the parties can verify that the broad-
casted messages are consistent with the commitments sent earlier, aborting if this is not
the case. As a result, the corrupt parties cannot change their message to be broadcasted
after they have sent the commitment, and the only information they have possibly seen
before sending their message are the commitments from the other parties, which leak
nothing about the actual messages.

We refer the reader to Section 2.7.2.1 for a bit more detailed description on this method.
However, for the purposes of the current section the formalization of the “commit-and-
open” technique as the simultaneous broadcast functionality from above suffices, and
this is the approach we will follow in our protocols and their proofs.
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6.3.2 Reconstructing Shared Values

Now we show that, given a shared value 〈s〉k+κ = (JsKk+κ , Jα · sKk+κ , JαKk+κ), the adver-
sary cannot cause the reconstruction of this value to lead to s ′ ∈ Z/2k+κZ with s ′ 6≡k s ,
except with probability 2−κ. This is done via the procedure πOpen below. In this chap-
ter, a procedure, in contrast to a protocol, is an algorithm executed by the parties that
will be plugged in later on in an actual protocol. A useful analogy is to think of pro-
cedures as macros in programming languages such as C/C++, and protocols as include
statements.

Procedure πOpen

Input: Shared value 〈s〉k+κ = (JsKk+κ , Jα · sKk+κ , JαKk+κ).
Output: The parties either learn s ′ with s ′ = s + δ for some additive error δ chosen by the
adversary with δ ≡k 0, or the parties abort.
Procedure: Let JsK = (s1, ... , sn).

1. Each party Pi broadcasts si to the other parties. Upon receiving these values each
party computes s ′ =

∑n
i=1 s

′
i mod 2k+κ, where s ′i is the actual value broadcasted by

Pi .a

2. The parties compute locally JzKk+κ ← Jα · sK− s ′ JαK. Let JzK = (z1, ... , zn).

3. Each party Pi simultaneously-broadcasts zi to the other parties.

4. The parties compute z =
∑n

i=1 z
′
i mod 2k+κ, where z ′i is the actual value broadcasted

by Pi . If z 6≡k+κ 0 then the parties abort.
aThis can be optimized by asking each party Pi to send si to P1 and then asking P1 to broadcast
s ′ =

∑n
i=1 s

′
i mod 2k+κ.

Proposition 6.2. Let s ′ ∈ Z/2k+κZ be the value computed by the parties in the first step
of the procedure above. If the parties do not abort in the execution of πOpen, then s ′ ≡k s ,
except with probability 2−(κ+1).

Proof. For i ∈ [n] let us write s ′i = si + δi , where δi = 0 for i ∈ H. Then s ′ =
∑n

i=1 si +∑n
i=1 δi = s + δ mod 2k+κ. Now, if we write z ′i = zi + ϵi , where ϵi = 0 for i ∈ H, we have

that the value reconstructed by the parties in the final step of the protocol is

z ′ =
n∑

i=1

zi +
n∑

i=1

ϵi = z + ϵ = (αs − s ′α) + ϵ = −δ · α+ ϵ mod 2k+κ.

Now, to see the claim we prove the counter-positive, namely, if s ′ 6≡k s , which is equiv-
alent to δ 6≡k 0, then the parties abort, or more precisely, z ′ ≡k+κ 0, except with proba-
bility at most 2−(κ+1). To see this, observe from the above that z ′ ≡k+κ 0 if and only if
δ · α ≡k+κ ϵ. Let v be the largest integer such that 2v | δ, which, assuming that δ 6≡k 0,
satisfies v ≤ k − 1. We have that α ·

(
δ
2v

)
≡k+κ−v

ϵ
2v , and since δ/2

v ∈ (Z/2k+κ−vZ)∗,
we obtain α ≡k+κ−v

(
δ
2v

)−1 ( ϵ
2v

)
. In particular, since k + κ − v ≥ κ + 1, we have that

α ≡κ+1

(
δ
2v

)−1 ( ϵ
2v

)
.
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Recall that α ∈ Z/2k+κZ is uniformly random and unknown to the adversary, δ is chosen
by the adversary independently of α and ϵ is chosen independently of z = −δ ·α because
of the simultaneous broadcast. As a result, the probability that α ≡κ+1

(
δ
2v

)−1 ( ϵ
2v

)
holds

is at most 2−(κ+1).

Finally, we also consider a similar procedure πOpen.Ind(〈s〉k+κ , i) which, instead of asking
each party broadcast their data, each party sends these values to party Pi , who performs
the necessary checks internally.

Remark 6.1 (Privacy of the opening procedure πOpen). When we make use of the opening
procedure in our main protocol from Section 6.4, it will be crucial that, when reconstruct-
ing a shared value 〈s〉k+κ, only s mod 2k is leaked, and in particular, nothing about the
upper κ bits of s should be learned by the adversary. However, as described above, the
procedure πOpen leaks all of s since the parties announce to each other their additive
shares of s modulo 2k+κ.

To address this issue, the procedure πOpen will be used in our main protocol to reconstruct
not a shared value 〈s〉, but rather 〈s〉+ 2k 〈r〉 where r is a uniformly random value. This
shared value has the same lower k bits as s , but the upper κ bits are uniformly random
and reveal nothing to the adversary.

6.4 InstantiatingFPABB with Preprocessing

Now we make use of the authenticated secret-sharing scheme with homomorphism over
Z/2kZ presented in the previous section to instantiate the functionality FPABB. Recall
that this functionality handles the commands (random), (triple), (open.ind), (comb) and
(open). The authenticated secret-sharing scheme 〈·〉 will be used to instantiate the be-
havior of “storing” values, and its homomorphism modulo 2k is used to instantiate the
command (comb). Furthermore, the opening procedures from Section 6.3.2 will be useful
for the (open) and (open.ind) commands.

In the original work of [32] the (random) and (triple) commands are instantiated us-
ing Oblivious Transfer, by adapting the techniques from the dishonest majority protocol
MASCOT [62] over fields to the Z/2kZ setting. In this thesis we do not include the in-
stantiation of these commands. Instead, we define a functionality FPrep that instantiates
these commands in the context of our authenticated secret-sharing scheme 〈·〉. Observe
that the data generated by the commands (random) and (triple) is actually independent
of the inputs the parties provide, which means they can be generated in a preprocess-
ing phase, before the inputs to the computation are known. As pointed out above, an
instantiation of the FPrep functionality is presented in the original work of [32].

Now we describe the FPrep functionality.
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Functionality FPrep

The functionality proceeds as follows.

• On input (init) from all the parties, receive {αi}i∈C ⊆ Z/2k+κZ from the adver-
sary, then sample αi ∈R Z/2k+κZ and send this value to Pi for i ∈ H. Let
α =

(∑n
i=1 αi

)
mod 2k+κ.

• On input (random) from all the parties, proceed as follows.
1. Receive {ri}i∈C ⊆ Z/2k+κZ from the adversary, then sample ri ∈R Z/2k+κZ
and send this value to Pi for i ∈ H.

2. Let r =
(∑n

i=1 ri
)

mod 2k+κ. Receive {γ(r)i }i∈C ⊆ Z/2k+κZ from the adversary,
then sample γ(r)i ∈R Z/2k+κZ for i ∈ H constrained to α · r ≡k+κ

∑n
i=1 γ

(r)
i

and, for each i ∈ H, send γ(r)i to Pi .

• On input (triple) from all the parties, proceed as follows.
1. Receive {(ai , bi , ci )}i∈C from the adversary with ai , bi , ci ∈ Z/2k+κZ.
2. Sample (ai , bi ) ∈R (Z/2k+κZ)2 for i ∈ H and let a =

(∑n
i=1 ai

)
mod 2k+κ and

b =
(∑n

i=1 bi
)

mod 2k+κ. Sample ci ∈R Z/2k+κZ for i ∈ H uniformly at random
constrained to c ≡k+κ

∑n
i=1 ci , where c = a · b mod 2k+κ.

3. Receive {(γ(a)i , γ
(b)
i , γ

(c)
i )}i∈C ⊆ (Z/2k+κZ)3 from the adversary, then sample

(γ
(a)
i , γ

(b)
i , γ

(c)
i ) ∈R (Z/2k+κZ)3 for i ∈ H constrained to α · a ≡k+κ

∑n
i=1 γ

(a)
i ,

α · b ≡k+κ

∑n
i=1 γ

(b)
i and α · c ≡k+κ

∑n
i=1 γ

(c)
i

4. For each i ∈ H, send (ai , γ
(a)
i ), (bi , γ(b)i ) and (ci , γ

(c)
i ) to Pi .

Observe the following:

• When the parties call the command (init), they get additive shares JαKk+κ, where
α mod 2k is uniformly random in Z/2k+κZ.

• When the parties call the command (rand), they get authenticated shares 〈r〉, where
r ∈ Z/2k+κZ is uniformly random.

• When the parties call the command (mult), they get authenticated shares
(〈a〉 , 〈b〉 , 〈c〉), where a, b ∈ Z/2k+κZ are uniformly random and c = a · b mod 2k+κ.

With the preprocessing functionality FPrep at hand, we can now instantiate the function-
ality FPABB, which, as shown in Section 6.2, is enough to instantiate the arithmetic black
box functionalityFABB. The protocolΠPABB below instantiates the functionalityFPABB with
statistical security in the FPrep-hybrid model. As we have already mentioned, the main
idea behind the protocol is to use the authenticated secret-sharing scheme 〈·〉 to instan-
tiate the storing capabilities of FPABB together with the (comb), (open) and (open.ind)
commands.

Protocol ΠPABB

The parties begin by calling FPrep on input (init). Then:

• On input (random, id), the parties send (rand) to FPrep, obtaining 〈r〉. The parties
store internally (id, 〈r〉).
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• On input (triple, id1, id2, id3), the parties send (triple) to FPrep, obtaining
(〈a〉 , 〈b〉 , 〈c〉). The parties store internally (id1, 〈a〉), (id2, 〈b〉) and (id3, 〈c〉).

• On input (comb, {ci}ℓi=0, {idi}i∈[ℓ], idℓ+1), the parties retrieve (idi , 〈xi 〉) for i ∈ [ℓ]

from memory and store (idℓ+1, 〈z〉), where 〈z〉 ← c0 +
∑ℓ

i=1 ci 〈xi 〉.

• On input (open.ind, id, i) the parties retrieve (id, 〈x〉) from memory and do the fol-
lowing:
1. Send (random) to FPrep to get 〈rx〉.
2. Execute the procedure πOpen.Ind(〈z〉 , i), with 〈z〉 ← 〈x〉+ 2k · 〈rx〉.

• On input (open, id) the parties retrieve (id, 〈x〉) from memory and do the following:
1. Send (rand) to FPrep to get 〈rx〉.
2. Execute the procedure πOpen(〈z〉 , i), with 〈z〉 ← 〈x〉+ 2k · 〈rx〉.

Theorem 6.1. Protocol ΠPABB instantiates the functionality FPABB with statistical security
in the FPrep-hybrid model.

Proof. We define the simulator S as follows:

S begins by emulating FPrep on input (init) by receiving {αi}i∈C ⊆ Z/2k+κZ from the ad-
versary and sampling αi ∈R Z/2k+κZ for i ∈ H. Let α =

(∑n
i=1 αi

)
mod 2k+κ.

• Upon receiving (random, id) from FPABB, S proceeds as follows:
1. S emulates FPrep on input (rand) by receiving {r i}i∈C ⊆ Z/2k+κZ from the
adversary, then sampling r i ∈R Z/2k+κZ for i ∈ H.

2. Let r =
(∑n

i=1 r i
)

mod 2k+κ, and store (id, 〈r〉) in memory. Receive {γ(r)i }i∈C ⊆
Z/2k+κZ from the adversary, then sample γ(r)i ∈R Z/2k+κZ for i ∈ H con-
strained to α · r ≡k+κ

∑n
i=1 γ

(r)
i and, for each i ∈ H, send γ(r)i to Pi .

• On input (triple, id1, id2, id3) from FPABB, S emulates FPrep on input (triple) as fol-
lows.
1. Receive {(ai , bi , c i )}i∈C from the adversary with ai , bi , c i ∈ Z/2k+κZ.
2. Sample (ai , bi ) ∈R (Z/2k+κZ)2 for i ∈ H and let a =

(∑n
i=1 ai

)
mod 2k+κ and

b =
(∑n

i=1 bi
)

mod 2k+κ. Sample c i ∈R Z/2k+κZ for i ∈ H uniformly at ran-
dom constrained to c ≡k+κ

∑n
i=1 c i , where c = a · b mod 2k+κ.

3. Receive {(γ(a)i , γ
(b)
i , γ

(c)
i )}i∈C ⊆ (Z/2k+κZ)3 from the adversary, then sample

(γ
(a)
i , γ

(b)
i , γ

(c)
i ) ∈R (Z/2k+κZ)3 for i ∈ H constrained to α · a ≡k+κ

∑n
i=1 γ

(a)
i ,

α · b ≡k+κ

∑n
i=1 γ

(b)
i and α · c ≡k+κ

∑n
i=1 γ

(c)
i

4. Store (id1, 〈a〉), (id1,
⟨
b
⟩
) and (id1, 〈c〉) in memory.

• On input (comb, {ci}ℓi=0, {idi}i∈[ℓ], idℓ+1) from FPABB, S retrieves (idi , 〈xi 〉) for i ∈ [ℓ]

from memory and store (idℓ+1, 〈z〉), where 〈z〉 ← c0 +
∑ℓ

i=1 ci 〈xi 〉.

• On input (open, id, i) and x from FPABB, S retrieves (id, 〈x〉) from memory and then
proceeds as follows:
1. S emulates FPrep on input (random) by receiving {(r i , γ(r)i )}i∈C from the ad-
versary, then sampling ri ∈R Z/2k+κZ. Let r =

(∑n
i=1 ri

)
mod 2k+κ.
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2. S samples virtual honest parties’ shares of 〈x〉 so that the underlying secret
is x , then computes 〈z〉 ← 〈x〉 + 2k 〈r〉 and emulates the execution of the
procedure πOpen.Ind(〈z〉 , i). If the execution results in abort, S sends abort to
FPABB.

• On input (open.ind, id, i)
– If i ∈ C, S retrieves (id, 〈x〉) from memory and proceeds as above
– If i /∈ C, C emulates FPrep on input (random) as above, and receives data from
the adversary as the emulation of πOpen.Ind. If the execution results in abort, S
sends abort to FPABB.

The indistinguishability argument for all the commands except (open) and (open.ind)
is straightforward, given that the simulator simply executes the exact same steps in the
emulation of these as in the real world. The most sensitive commands are (open) and
(open.ind). In these two, S emulates the execution in the same way as in the real world,
except that, in the ideal world, the parties get the correct values stored by FPABB, while
in the real world they get the result of the reconstruction. However, thanks to Proposi-
tion 6.2, if the parties do not abort in the execution of the procedures πOpen and πOpen.Ind,
then the parties reconstruct the same secret as the one stored by FPABB, except with
probability 2−κ.
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Chapter 7

Primitives for Secure Computation using
edaBits

The final chapter of this thesis is devoted to exploring some generic primitives for ex-
tending the range of applications of secure computation protocols. Most relevant ap-
plications of secure multiparty computation are not restricted to simple additions and
multiplications over a ring, and there are many slightly more advanced operations that
are common across many applications. For example, in settings involving real-valued
arithmetic such as scientific computing and analysis of continuous data, either fixed or
floating-point arithmetic must be used, which enable the emulation of an infinite domain
such as the real numbers using bounded-machine registers, such as these in computer
architectures and also the ring elements used in multiparty computation protocols. An-
other example includes secure integer comparison, which is useful in contexts where an
action, like branching, must be taken depending on the “size” of a given value.

Given the importance and recurring use of these different primitives, it becomes a highly
relevant task to design efficient subprotocols to securely compute these operations,
given that these can be later used in a “plug-and-play” manner in larger application
contexts. There are simply too many operations that one could consider relevant across
many settings, but fortunately, many of these can be associated to mixed computation.
In this context, different operations over integers like addition, subtraction or multipli-
cation are required, but other operations at the level of the bits of the given integers are
also needed, together with conversions between the arithmetic and binary “worlds”. To
illustrate the usefulness of mixed computation, note the operation of integer comparison
can be phrased as an operation at the level of bits that compares the bit-decomposition
of the two input integers and decides which of the two is the largest. In fact, since any
computation can be written as an arithmetic circuit over a field, in particular every com-
putation can be written as a binary circuit (which is an arithmetic circuit over F2 = {0, 1}),
but most importantly, many relevant operations are naturally written as binary circuits.

The approach considered in the original work of [50] in order to enable operations be-
yond basic additions and multiplications consists of preprocessing some type of secret-
shared data, called edaBits, which stands for Extended Doubly-Authenticated Bits, and
using this correlation to securely compute more advanced primitives in the online phase
of the protocol execution. An m-bit edaBit is a tuple of secret-shared values of the
form (JrK , Jr [m − 1]K2 , ... , Jr [0]K2), where r is an m-bit uniformly random integer and
(r [m− 1], ... , r [0]) is its bit decomposition. Here J·K is a secret-sharing scheme for modu-
lar integers, and J·K2 is a secret-sharing scheme for bits, concepts that will be formalized
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later on in this chapter by means of an arithmetic black box (ABB) functionality. The main
remark to be made at this early stage is that edaBits are extremely powerful and flex-
ible, not requiring any assumption about the underlying secret-sharing scheme or the
different methods to instantiate the ABB, and only relying on the core basic operations
like additions and multiplications, together with the ability of opening secret-shared val-
ues. From this, edaBits can be used in a wide variety of settings like t < n/3, t < n/2,
t < n, passive/active security, or even more complex scenarios, as long as the ABB can
be instantiated.

The original work of [50], in addition to introducing the concept of edaBits and some
of their potential applications, also presents a generic approach to preprocessing these
objects in the dishonest majority setting, without making any assumption whatsoever
about the underlying secure computation protocol beyond the ability to perform basic
operations such as additions and multiplications. We chose to exclude this contribution
from this thesis with the goal of keeping focus on the use and applications of edabits
themselves rather than their generation.1 We also remark that, in the original work of
[36], we present a full implementation of our techniques in the MP-SPDZ framework [61],
together with a wide range of thorough experiments, micro-benchmarks and applications
to privacy-preserving machine learning. These are also excluded from this thesis.

Organization of this chapter. First, in Section 7.1 we introduce the functionality FMABB,
which extends the standard arithmetic black-box model we have previously used to sup-
port conversions between binary and arithmetic shared values; this will be crucial for
the applications of edaBits we discuss later in the chapter, and can be easily instan-
tiated from the standard FABB model by means of daBits [73]. Then, in Section 7.2 we
formally introduce the concept of edaBits, and, even though we do not show how to
fully generate them as this is very context dependent, we do show in Section 7.2.1 how to
produce edaBits from what we call private edaBits, which are simply edaBits where the
secret is known by some party. Finally, in Section 7.3 we present the different advanced
primitives that can be securely computed with the help of edaBits.

We remark that, as we have mentioned already, the results of this chapter are based
on the original work of [50], and as such, parts of the text presented here are taken
verbatim from that work.

7.1 Mixed Arithmetic Black Box

In this section we define the core functionality that will support the rest of the operations
on top. The mixed arithmetic black box model, or MABB for short, is like the arithmetic
black box model we have used before (for example in Section 6.1), except it is expanded
to admit two types of values to be stored: “large” integers and bits. The MABB model,
1We recall that we did discuss in Section 5.3.7.4 the generation of edaBits in the context of four-party
computation. This was done because the protocol, which is set in the context of t < n/3 with a small
number of parties, had a simple design and was simple to describe. The generation of edaBits presented
in the original work of [50] for the dishonest majority setting follows a much more cumbersome design,
making use of cut-and-choose techniques and an extensive and highly non-trivial probability analysis.
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formalized as functionality FMABB below, also supports basic conversion between the two
types.

Functionality FMABB: Mixed Arithmetic Black Box

The functionality proceeds as follows. Below, type is a flag that equals either arithmetic
or binary.

• On input (input, id, type, i) from the honest parties, send (input, id, type, i) to the
adversary, wait for input (value, id, type, x) from party Pi , where x ∈ Z/2kZ if type =
arithmetic and x ∈ Z/2Z if type = binary, and then store (id, type, x) in memory.

• On input (comb, {ci}ℓi=0, {idi}i∈[ℓ], idℓ+1, type) from the honest parties, retrieve
(idi , xi , type) for i ∈ [ℓ] from memory and store (idℓ+1, type, z), where z = (c0 +∑ℓ

i=1 cixi ) mod 2k if type = arithmetic, and z = (c0 +
∑ℓ

i=1 cixi ) mod 2 if type =
binary. Then send (comb, {ci}ℓi=0, {idi}i∈[ℓ], idℓ+1, type) to the adversary.

• On input (mult, id1, id2, id3, type) from the honest parties, retrieve (id1, type, x) and
(id2, type, y) from memory and store (id3, type, z), where z = x · y mod 2k if type =
arithmetic, and z = x · y mod 2 if type = binary. Then send (mult, id1, id2, id3, type)
to the adversary.

• On input (open, id, type) from the honest parties, retrieve (id, type, x) from memory
and send x to all the parties. Then send (open, id, type) to the adversary.

• On input (convert, id1, id2, type) from the honest parties, retrieve (id, type, x) from
memory and:

– If type = arithmetic, store (id,binary, x mod 2) in memory.
– If type = binary, store (id, arithmetic, x) in memory.

Then send (convert, id1, id2, type) to the adversary.

All of our results below are set in the FMABB-hybrid model, which in practice means that
we assume the existence of a secure multiparty computation protocol based on secret-
sharing for the given security model (passive/active security, honest/dishonest majority,
etc.). This could be instantiated for example using some of the protocols we have studied
so far in this work.

Since in practice FMABB is instantiated using a linear secret-sharing scheme, as we
have seen in multiple constructions before in this thesis. Motivated by this, when-
ever a value (id, type, x) is stored (the use of the ID is implicit), we denote this by JxK
if type = arithmetic and JxK2 if type = binary, and we say that x is secret-shared. We
also use the following notation:

• JxK ← JxK2 whenever (convert, id1, id2,binary) is called (with x stored as
(id1,binary, x)).

• JxK2 ← JxK whenever (convert, id1, id2, arithmetic) is called (with x stored as
(id1, arithmetic, x)).

• JzK← c0+
∑ℓ

i=1 ci JxiK whenever (comb, {ci}ℓi=0, {idi}ℓi=1, idℓ+1, arithmetic) is called
(with xi stored as (idi , arithmetic, xi ) for i ∈ [ℓ]); we define in a similar way JzK2 ←
c0 +

∑ℓ
i=1 ci JxiK2
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• JzK ← JxK · JyK whenever (mult, id1, id2, id3, arithmetic) is called, and similarlyJzK2 ← JxK2 · JyK2.
7.1.1 Conversions using DaBits

The only “non-standard” command in FMABB is the conversion between arithmetic and
binary secret-shared values. These can be instantiated from certain type of preprocessed
data called daBits, which was proposed initially in [73]. As the name suggests, edaBits
constitute a generalization of daBits, and using our terminology the latter can be seen a
1-bit edaBits. More precisely, a daBit is a pair (JrK , JrK2), where r ∈R {0, 1} is uniformly
random and unknown to any party.

Conversions. Given JbK2, the parties can obtain JbK with the help of a daBit (JrK , JrK2)
by executing the following:

1. Reconstruct d ← JrK2 ⊕ JbK2;
2. Compute locally JbK← d + JrK− 2d JrK

Given JbK, where b ∈ {0, 1}, in the context of secret-sharing, the parties can typically
obtain JbK2 locally by reducing their shares modulo 2. Alternatively, they can make use
of a daBit in a similar way as above.

Generating a daBit. A generic method to obtain a daBit, consists in asking each party
Pi for i ∈ [t + 1] to sample a uniformly random bit ri ∈ {0, 1}, followed by the par-
ties executing the (input, ∗, arithmetic, i) and (input, ∗,binary, i) commands so that they
obtain (JriK2 , JriK). Once this is done, the parties can compute JrK ← ⊕t+1

i=1 JriK andJrK2 ← ∑t+1
i=1 JriK2 (with the ⊕ operator, denoting XOR, computed arithmetically as

a ⊕ b = a + b − 2ab). This results in a uniformly random bit r given that there is one
honest party among the parties P1, ... ,Pt+1 who is guaranteed to provide a uniformly
random bit ri , so the final bit r =

⊕t+1
i=1 ri will also be uniformly random.

The above assumes that every party’s value ri lies in {0, 1}, which may not be the case for
an actively corrupt party for the arithmetic sharing JriK. In this case, the adversary can
introduce some values ri /∈ {0, 1}, so the value computed JrK←⊕t+1

i=1 JriK may not lie in
{0, 1}, given that a+ b − 2ab is only guaranteed to be in {0, 1} if both a and b are in this
set. To ensure that each party secret-shares a bit, the parties can execute the following
simple protocol. For each secret-shared JriK, the parties call JzK ← JriK · JriK − JriK, and
open z . If z = 0, then the parties determine that ri ∈ {0, 1}, else they abort. This works
given that x2 − x ≡k 0 if and only if x ∈ {0, 1}.
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7.2 Extended Double-Authenticated Bits

Now we present the formal definition of edaBits. These are, with the terminology we have
introduced, a tuple (JrK , Jr [m − 1]K2 , ... , Jr [0]K2), where r [i ] ∈R {0, 1} for i ∈ {0, ... ,m−1}
and r =

∑m−1
i=0 r [i ]2i . This is formalized by means of a functionality FedaBits, presented

below, that supports all the commands available to FMABB, but in addition enables a
command for producing edaBits. This functionality is presented below.

Functionality FedaBits
The functionality includes the exact same commands as FMABB. In addition, it supports
the following:

• On input (edabit, {idℓ}mℓ=0,m) from the honest parties, sample r ∈R Z/2mZ,
bit-decompose this value as (r [m − 1], ... , r [0]) ∈ {0, 1}m and store in
memory (id0, arithmetic, r) and (idℓ+1,binary, r [ℓ]) for ℓ ∈ [m]. Then send
(edabit, {idℓ}mℓ=0,m) to the adversary.

7.2.1 Global EdaBits from Private EdaBits

As we have already mentioned at the beginning of this chapter, our main goal is to focus
on the applications of edaBits, rather than discussing how to generate these. However,
before we dive into these applications, we discuss an alternative “version” of edaBits
which is potentially simpler to produce, and from which “normal” edaBits can be ob-
tained. These simpler edabits consist of shared values (JrjK , Jrj [m − 1]K2 , ... , Jrj [0]K2),
where rj [i ] ∈ {0, 1} for i ∈ {0, ... ,m− 1}, rj =

∑m−1
i=0 rj [i ] · 2i , and rj is known by party Pj .

EdaBits of the type above, which are formalized by the functionality FP.edaBits below, are
called Private edaBits, which refers to the fact that the underlying secret is known by
one party. In the original work of [50] it is shown how to instantiate the functionality
FP.edaBits using a novel and highly non-trivial cut-and-choose-based approach. In a nut-
shell, this consists of letting each party Pj sample rj internally and distribute the sharings
(JrjK , Jrj [m − 1]K2 , ... , Jrj [0]K2). In fact, each Pj does this multiple times. In order to check
that the underlying values are correct (that is, rj [i ] ∈ {0, 1} for i ∈ {0, ... ,m − 1} and
rj =

∑m−1
i=0 rj [i ] · 2i ), the parties execute a protocol in which some of the sharings are

opened (after processing them in a specific way) to check their correctness, and via a
combinatorial argument it can be shown that the unopened private edaBits are correct
with high probability.

Functionality FP.edaBits
The functionality includes the exact same commands as FMABB. In addition, it supports
the following:

• On input (p.edabit, {idℓ}mℓ=0,m, i) from the honest parties, proceed as follows:
1. Sample r ∈R Z/2mZ
2. Bit-decompose this value as (r [m − 1], ... , r [0]) ∈ {0, 1}m

3. Store in memory (id0, arithmetic, r) and (idℓ+1,binary, r [ℓ]) for ℓ ∈ [m].
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4. Send r to party Pi

5. Then send (edabit, {idℓ}mℓ=0,m, i) to the adversary.

Private edaBits can be used to instantiate the FedaBits functionality in a similar way as
“private daBits” can be used to obtain daBits, as discussed in Section 7.1.1: after t + 1
private edaBits (JrjK , Jrj [m − 1]K2 , ... , Jrj [0]K2) for j ∈ {0, ... , t+1} are obtained, these can
be “added” together to obtain uniformly random edaBits where no single party knows
the underlying secrets. This is achieved in the protocol ΠedaBits below. We denote by
BitADD a binary circuit that adds together t + 1 m-bit values, obtaining a m+ log(n) bits
representing the result.

Protocol ΠedaBits

Functionalities: FP.edaBits.
Output: The parties get (JrK , Jr [m − 1]K2 , ... , Jr [0]K2) where r =

∑m−1
j=0 ri [j ] · 2j and the bits

are uniform to the adversary.
Protocol: The parties proceed as follows:

1. Call the functionality FP.edaBits to get random shares (JriK , Jri [m − 1]K2 , ... , Jri [0]K2),
for i = 1, ... , t + 1. Party Pi additionally learns ri [j ] for j ∈ {0, ... ,m − 1} and ri =∑m−1

j=0 ri [j ]2
j .

2. Call Jr ′K←∑t+1
i=1 JriK.

3. Compute the m + log n bits (Jb0K2 , ... , qbm+log(n)−1

y
2
) ←

BitADD
(
(Jr1[j ]K)m−1

j=0 , ... , (Jrt+1[j ]K)m−1
j=0

)
.

4. Call JbjK ← JbjK2 for j ∈ {m, ... ,m + log(n) − 1}. Values bj for j > k do not need to
be converted, and for the sake of notation, we denote JbjK := 0 for j > k .

5. Compute JrK← Jr ′K− 2m
∑log(n)−1

j=0 Jbj+mK 2j .
6. Output (JrK , Jb0K2 , ... , Jbm−1K2).

Theorem 7.1. Protocol ΠedaBits instantiates functionality FedaBits with perfect security in
the FP.edaBits-hybrid model.

Proof. (Sketch) First, notice that the bits (b0, ... , bm+log(n)−1) computed by them-bit adder
correspond to the bit decomposition of r ′′ =

∑t+1
i=1 ri , where the addition is performed

over the integers. On the other hand, the shared value Jr ′K computed by the parties in
step 2 of the protocol satisfies r ′ ≡

∑t+1
i=1 ri mod 2k , so r ′ ≡k r ′′. From this it follows

that r ≡k r ′ − 2m
∑log(n)−1

j=0 bj+m2
j ≡k

∑m−1
ℓ=0 bℓ2

ℓ, so the output (JrK , Jb0K2 , ... , Jbm−1K2)
is indeed an m-bit edaBit.

It only remains to be seen that the distribution of r is uniformly random, which can
be obtained from the fact that r =

(∑t+1
i=0 ri mod 2m

)
, and there is at least one ri for

i ∈ [t + 1] that is uniformly random.
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7.3 Applications of EdaBits

Now we turn to the main contribution of this chapter, namely, an improved set of ap-
plications using edaBits as the main building block. We focus on bit decomposition and
bit composition (Section 7.3.1), secure truncation (Section 7.3.2) and secure integer com-
parison (Section 7.3.3), although our techniques apply to a much wider set of non-linear
primitives that require binary circuits for intermediate computations. For example, our
techniques also allow us to compute binary-to-arithmetic and arithmetic-to-binary con-
versions of shared integers, by plugging in our edaBits into the conversion protocols
from [27] and [44] for the field and ring cases, respectively.

7.3.1 Arithmetic/Binary Conversions

Our first primitive consists of conversions between the arithmetic and the binary world.

7.3.1.1 Arithmetic-to-Binary

In arithmetic-to-binary conversion, or bit-decomposition, we are given a shared valueJxK, and we would like to find shares of its bit decomposition (Jx [k − 1]K2 , ... , Jx [0]K2).
Protocol ΠA2B: Arithmetic to Binary Conversion

Input: Shared values JxK
Functionality: FedaBits.
Output: Jx1K2 , Jx2K2 , ... , JxmK2.
Protocol: The parties proceed as follows

1. Call FedaBits to obtain a k-bit edaBit (JrK , Jr [k − 1]K2 , ... , Jr [0]K2).
2. JcK← JxK− JrK.
3. Open c ← JcK
4. Compute (Jx [k − 1]K2 , Jx [k − 2]K2 , ... , Jx [0]K2)← BitAdd(c , Jr [k − 1]K2 , ... , Jr [0]K2).a

aHere BitAdd is assumed to be a binary circuit computing the addition modulo 2k of the integer c ′
with the bit-decomposed value (r [k − 1], ... , r [0]).

To see that the protocol works as intended, notice that c = (x − r) mod 2k , so the result
of the binary adder modulo 2k is the bit decomposition of (c + r) mod 2k = x . Privacy
holds given that r ∈ Z/2kZ is uniformly random and unknown to the adversary.

7.3.1.2 Binary-to-Arithmetic

In binary composition, or binary-to-arithmetic conversion, we are given k secret-shared
bits (Jx [k − 1]K2 , ... , Jx [0]K2), and the task is to find JxK, where x =

∑k−1
i=0 2ix [i ]. This is
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achieved by means of the protocol ΠB2A below. In spirit, the protocol operates in the
same way as ΠA2B: the edaBits is subtracted to the input, the result is opened, and the
mask is undone by adding the edaBit again. This time, the procedure is executed in
the “opposite direction”, meaning that the initial masking is performed with the shared
bits from the edaBit, and the final unmasking is done with the arithmetic edaBit. The
argument of correctness and privacy remains essentially the same.

Protocol ΠB2A: Binary to Arithmetic Conversion

Input: Shared bits Jx [k − 1]K2 , ... , Jx [0]K2.
Functionalities: FedaBits.
Output: JxK.
Protocol: The parties proceed as follows

1. Call FedaBits to obtain a k-bit edaBit (JrK , Jr [k − 1]K2 , ... , Jr [0]K2).
2. Compute (Jc [k − 1]K2 , ... , Jc [0]K2) = BitSub((Jx [j ]K2)k−1

j=0 , (Jr [j ]K2)k−1
j=0 ).a

3. Open c [j ]← Jc [j ]K2 for j ∈ {0, ... , k − 1}.

4. Let c =
∑k−1

j=0 c [j ]2j . Output JxK = c + JrK.
aHere BitSub is assumed to be a binary circuit computing the subtraction modulo 2k of the integer
r with the bit-decomposed value (x [j ])k−1

j=0 with (r [j ])k−1
j=0 .

7.3.2 Truncation

Letm be an integer in {0, ... , k−1}. The goal of a truncation protocol is to obtain JyK fromJxK, where y =
⌊

x
2m

⌋
. In terms of bits, if the bit-decomposition of x is (x [k − 1], ... , x [0]),

this corresponds to shifting the representation to (0, ... , 0, x [k − 1], ... , x [m]). This is a
crucial operation when dealing with fixed-point arithmetic, and therefore an efficient
solution for it has a substantial impact in the efficiency of MPC protocols for a wide
range of applications.

An important observation is that
⌊

x
2m

⌋
= x−(x mod 2m)

2m . Indeed, if x =
∑k−1

j=0 x [j ]2j then

(x mod 2m) =
∑m−1

j=0 x [j ]2j so x−(x mod 2m)
2m =

∑k−1
j=m x [j ]2j

2m =
∑k−1

j=m x [j ]2j−m =
∑k−m−1

ℓ=0 x [ℓ+

m]2ℓ.

Truncation protocols over fields typically exploit the fact that one can divide by powers
of 2 modulo p. This is the case for example in the protocols presented in [27]. This is not
possible when working modulo 2k , so we take a different approach. Let JxK be the initial
shared value, and let (x [k − 1], ... , x [0]) be the bit-decomposition of x . For our protocol
to work, we need to assume that x , which in principle lies in the range [0, 2k), actually
lies in [0, 2ℓ) for some ℓ < k , which in particular means that x [k − 1] is guaranteed to be
0.

In order to compute
q⌊

x
2m

⌋y
, our protocol begins by computing shares of x mod 2m, and

subtracting them from x , which produces shares of the value with bit-decomposition
(x [k − 1], ... , x [m], 0, ... , 0). At this point it only remains to “right-shift” this value by m
positions to obtain (0, ... , 0, x [k − 1], ... , x [m]). This is achieved by asking the parties to
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open a masked version of x− (x mod 2m), which does not reveal the upper k−ℓ bits, and
then shift to the right by m positions in the clear. Finally, the parties undo the truncated
mask. One has to account for the overflow that may occur during this masking, but this
can be calculated using a less-than binary circuit.

Protocol ΠTrunc: Truncation

Input: Shared value JxK with x ∈ [0, 2ℓ) for some ℓ < k .
Functionalities: FedaBits.
Output: JyK where y =

⌊
x
2m

⌋
.

Protocol: The parties call FedaBits to obtain:
• m-bit edaBit (JrK , Jr [m − 1]K2 , ... , Jr [0]K2)
• ℓ−m-bit edaBit (Jr ′K , Jr ′[ℓ−m − 1]K2 , ... , Jr ′[0]K2)

Then, the parties proceed as follows

1. The parties compute shares of x mod 2m as follows:
a) Open c ← 2k−m · (JaK + JrK)
b) Compute JvK2 = LT((c [i ])ki=k−m+1, (Jr [i ]K2)m−1

i=0 )a

c) Convert JvK← JvK2
d) Compute Jx mod 2mK← 2m JvK− JrK + c/2k−m .

2. The parties compute the truncation:
a) Compute JbK← JxK− (Jx mod 2mK).
b) Open d ← 2k−ℓ · (JbK + 2m Jr ′K).
c) Compute JuK2 = LT((d [i ])k−1

i=k−ℓ+m, (Jr ′[i ]K2)ℓ−m−1
i=0 )

d) Convert JuK← JuK2
e) Output JyK← 2ℓ−m JuK + d/2k−ℓ+m − Jr ′K

aHere LT represents a binary circuit to determine which of the two inputs is smaller.

Now we analyze the correctness of Protocol ΠTrunc. First, it is easy to see that c =
2k−m((x + r) mod 2m), so c/2k−m = (x mod 2m) + r − 2mv , where v is set if and only
if c/2k−m < r . From this we can see that the first part of the protocol Jx mod 2mK is cor-
rectly computed. Privacy of this first part follows from the fact that r mod 2m completely
masks x mod 2m when c is opened.

For the second part, let us write b = 2mx ′, then d = 2k−ℓ+m((x ′ + r ′) mod 2ℓ−m), so
d/2k−ℓ+m = x ′ + r ′ − 2ℓ−mu, where u is set if and only if d/2k−ℓ+m < r ′, as calculated by
the protocol. We get then that x ′ = d/2k−ℓ+m− r ′+2ℓ−mu, and since x ′ is precisely

⌊
x
2m

⌋
,

we conclude the correctness analysis.

Probabilistic Truncation. In some cases rounding to nearest after division is desired,
that is, JyK must be computed from JxK, where y =

⌊
x
2m

⌉
. This can be approached as

shown directly above by relying on the protocol ΠTrunc. However, if certain error is al-
lowed, then we can design a more efficient protocol for this task, which results in a prob-
abilistic truncation protocol. Furthermore, this error will not be arbitrary, but instead it
will be “biased towards the right result”. More precisely, if we write x

2m =
⌊

x
2m

⌋
+ δ, where

δ ∈ [0, 1), then the result of the probabilistic truncation protocol will be shares of y ,

223



Chapter 7 Primitives for Secure Computation using edaBits

where y equals
⌈

x
2m

⌉
with probability δ, and it equals

⌊
x
2m

⌋
with probability 1− δ. In other

words, if δ is too close to 1, meaning that x
2m is very close to

⌈
x
2m

⌉
, then the protocol will

result in shares of this value, but if δ is too small, meaning that x
2m is actually closer to⌊

x
2m

⌋
, then the protocol will return shares of

⌊
x
2m

⌋
instead; if δ ≈ 1/2, meaning that x

2m is
as close to

⌈
x
2m

⌉
as it is to

⌊
x
2m

⌋
, then the protocol makes a random choice among these

two.

When the computation domain is a prime field, it turns out this operation can be carried
out in a constant number of rounds without the need of any binary circuit [27], such as
the circuit LT we made use of in ΠTrunc. Unfortunately, over the ring Z/2kZ this is a much
more challenging task. For example, probabilistic truncation with a constant number of
rounds is achieved in ABY3 [68], but it requires a 2κ gap between the secret values and
the actual modulus, where κ is a statistical security parameter, which in turn implies that
only small non-negative values can be truncated.2

In this work we take a different approach. Intuitively, we follow the same approach as in
ABY3, which consists of masking the value to be truncated with a shared random value for
which its corresponding truncation is also known, opening this value, truncating it and
removing the truncated mask. As we have mentioned, in ABY3 a large gap is required to
ensure that the overflow that may happen by the masking process does not occur with
high probability. Instead, we allow this overflow bit to be non-zero and remove it from
the final expression. Doing this naively would require us to compute a less-than binary
circuit, but we avoid doing this by using the fact that the overflow bit can be obtained
from the opened value by making the mask value also positive. This leaks the overflow
bit, which is not secure, and to avoid this we mask this single bit with another random
bit. Our approach requires the input to lie in [0, 2ℓ) for some ℓ < k , but we remark that
this is better than the gap from ABY3 where ℓ ≤ k − κ.

ΠPr.Trunc: Probabilistic Truncation

Input: Shared value JxK with x ∈ [0, 2ℓ) for some ℓ < k .
Functionalities: FedaBits.
Output: JyK where y = bx/2mc+ u with u = 1 with probability (x mod 2m)/2m .
Protocol: The parties call FedaBits to obtain:

• m-bit edaBit (Jr ′K , Jr ′[m − 1]K2 , ... , Jr ′[0]K2)
• ℓ−m-bit edaBit (JrK , Jr [ℓ−m − 1]K2 , ... , Jr [0]K2)
• 1-bit edaBit (JbK , JbK2).a

Then, the parties proceed as follows

1. Open c ← 2k−ℓ−1 · (JaK + 2ℓ JbK + 2m JrK + Jr ′K). Write c = 2k−ℓ−1c ′.

2. Compute JvK← JbK + c ′ℓ − 2c ′ℓ JbK
3. Output JyK← (c ′ mod 2ℓ)/2m − JrK + 2ℓ−m JvK

aThis can be optimized as the binary sharing JbK2 will not be used, only the JbK part is required.
Now we analyze the protocol. First we notice that c = 2k−ℓ−1c ′ where c ′ = (2mr + r ′) +
x + 2ℓb − 2ℓ+1vb, where v is set if and only if (2mr + r ′) + x overflows modulo 2ℓ. It is

2Such restriction is also present in most field-based protocols.
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easy to see that this implies that c ′ℓ = v ⊕ b, so we see that v = c ′ℓ ⊕ b, as calculated in
the protocol.

On the other hand, we have that (c ′ mod 2ℓ) = (2mr + r ′) + x − 2ℓv , so x mod 2m =
(c ′ mod 2m) − r ′ + 2mu, where u is set if (c ′ mod 2m) < r ′. From this it can be obtained
that

⌊
(c ′ mod 2ℓ)/2m

⌋
− r + 2ℓ−m = bx/2mc+ u.

7.3.3 Integer Comparison

Another important primitive that appears in many applications is integer comparison.
In this case, two secret integers JxK and JyK are provided as input, and the goal is to
compute shares of b = (x

?
< y), that is, b = 1 if x < y , and it is equal to 0 otherwise.

As noticed by previous works (e.g. [27, 44]), this computation reduces to extracting the
most-significant bit (MSB) from a shared integer as follows: if x , y ∈ [0, 2k−1), and if
z = (x − y mod 2k), then z ∈ [0, 2k−1) if x ≥ y , and z ∈ [2k−1, 2k) if x < y . Since
z ∈ [0, 2k−1) if z [k − 1] = 0 and z ∈ [2k−1, 2k) if z [k − 1] = 1, we see that z [k − 1], the
MSB of z , is equal to the desired bit (x

?
< y). To extract the MSB of z , we simply note that

z [k − 1] =
⌊

z
2k−1

⌋
mod 2k , so this can be done with the protocols we have seen in the

previous section.

The approach above, that is, calling ΠTrunc with m = k − 1, would require two sequential
calls to a less-than binary circuit. This can be optimized to one single call to such circuit
as follows.

ΠMSB: MSB Extraction

Input: Shared value JzK with z ∈ [0, 2k).
Functionalities: FedaBits.
Output: JbK where b = z [k − 1].
Protocol: The parties call FedaBits to obtain k-bit edaBit (JrK , Jr [k − 1]K2 , ... , Jr [0]K2). Then,
the parties proceed as follows

1. Open c ← JaK + JrK
2. Compute JvK2 ← LT

(
(c [i ])k−1

i=0 , (Jr [i ]K2)k−1
i=0

)
3. Compute JbK2 ← JvK2 ⊕ Jr [k − 1]K2 ⊕ c [k − 1]

4. Convert JbK← JbK2
5. Output JbK
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