
Groebner Bases and Applications to the
Security of Multivariate Public Key

Cryptosystems

Daniel Esteban Escudero Ospina

Trabajo de Grado presentado como
requisito para optar por el t́ıtulo de

Matemático

Asesor
Daniel Cabarcas Jaramillo

Escuela de Matemáticas
Facultad de Ciencias

Universidad Nacional de Colombia, Sede Medelĺın
Colombia

Diciembre, 2016

Contents

Introduction 9
Motivation . 9
Contribution . 10
Outline . 11
Acknowledgments . 11

I Groebner Bases 13

1 Groebner Bases: Definitions and Results 15
1.1 Basic Definitions . 15
1.2 A Division Algorithm in F[x1, . . . , xn] . 17
1.3 Dickson’s Lemma and Hilbert Basis Theorem 19
1.4 Groebner Bases . 23
1.5 Some Applications of Groebner Bases . 25

1.5.1 The Ideal Membership Problem 25
1.5.2 The Ideal Equality Problem . 25
1.5.3 Elimination Theory . 26
1.5.4 Solving Systems of Polynomial Equations 27

2 Computation of Groebner Bases 31
2.1 Buchberger’s Algorithm . 31
2.2 Lazard’s Algorithm . 34

2.2.1 Groebner Bases and Linear Algebra 35
2.2.2 Homogeneous Lazard’s Algorithm 37
2.2.3 Affine (or General) Lazard’s Algorithm 39
2.2.4 Termination Criteria . 41

2.3 Remarks about Computational Improvements 42

3 Complexity estimates 45
3.1 Some words on Algebraic Geometry and Commutative Algebra 45

3.1.1 Zariski topology . 45
3.1.2 Systems with Finitely Many Solutions 47
3.1.3 Hilbert’s Function and Hilbert’s Series 48

3.2 Degree of Regularity and Complexity of Lazard’s Algorithm 49
3.3 Regular and Semi-Regular Sequences . 50

CONTENTS

3.3.1 Generic Properties . 52
3.3.2 Semi-Regular Sequences . 52

3.4 Homogeneous vs Affine Polynomial Systems 53
3.4.1 Homogenization and Specialization 53
3.4.2 Arithmetical Complexity for Affine Systems 55

3.5 Dimension 0 vs Positive Dimension . 57
3.6 Falling Degree . 57

3.6.1 Reduced Ring . 58
3.6.2 Degree Falls and Trivial Degree Falls 59

II Applications to the security of MPK Cryptosystems 61

4 Multivariate Public Key Cryptography 63
4.1 Preliminaries on Cryptography . 63

4.1.1 Public Key Cryptography . 63
4.1.2 Post-Quantum Cryptography . 65

4.2 Multivariate Public Key Cryptosystems 65
4.2.1 First Reduction: Bipolar Construction 67
4.2.2 Second Reduction: Lifting Idea 68
4.2.3 General Construction . 69

4.3 Examples: HFE and ZHFE . 70
4.3.1 HFE . 70
4.3.2 ZHFE . 71

5 New Alternatives Using Cubic Polynomials 73
5.1 Multivariate Noisy Encryption Scheme 73

5.1.1 Description . 73
5.1.2 Computation of Cubic Droppings 74
5.1.3 Performance . 79
5.1.4 Security analysis . 79

5.2 “Non-noisy” Version . 84
5.2.1 Description . 84
5.2.2 Security analysis . 84

5.3 Two-Layer Construction . 86
5.3.1 Description . 86
5.3.2 Security Analysis . 87
5.3.3 Importance of using both Layers 89

6 Appendix 91
6.1 Preliminaries . 91

6.1.1 Finite Fields and Field Extensions 91
6.1.2 Frobenius Powers . 92

6.2 Correspondence of Polynomials . 93
6.3 Computation of Liftings and Droppings in the Quadratic Case 96
6.4 Experimental Data . 98

4

Contents

6.4.1 Groebner Bases Computation . 98
6.4.2 New Alternatives . 102

Bibliography 103

5

List of Algorithms

1 Polynomial division . 19
2 Computation of reduced Groebner bases 26
3 Computation of V(g1, . . . , gm) . 29

4 Buchberger’s algorithm . 33
5 Homogeneous Lazard’s algorithm . 38

Introduction

Motivation

A few words on Cryptography

In naive words, a cryptosystem is an algorithm or algorithms that allow two users to
share secret information in the possible presence of a malicious third party, in such a
way that they are the only ones capable of seeing and manipulating this information.
The first idea that may come to our minds involve symmetric cryptosystems, where both
parties need to have a common shared secret key and they use that key to both encrypt
and decrypt information. This kind of cryptosystems impose a big problem, which is the
process of according the common key. If the parties are able to establish a shared secret
key securely, why do not they simply share the secret information in the same way? In
historical contexts, this key was established in a secure channel like a personal meeting,
or a secure line, and this key was used for some time. This may seem to work, but
whenever they key must be replaced, the whole complicated process of establishing the
key must be repeated. Moreover, communication today is performed between parties
anywhere in the world, so a different approach is needed.

A new type of cryptosystems evade this issue. In asymmetric or public key cryptosys-
tems, we don’t have only one key but we have two keys per user, a private key which
only the user knows and a public key which is accessible by everyone. Whenever user
A wants to send a message to user B, he encrypts the message using B’s public key and
user B decrypts it using its private key. The well known RSA cryptosystem is a public
key cryptosystem.

Post-Quantum Cryptography and MPKC

To introduce what post-quantum cryptography is, consider the cryptosystem RSA. It is
widely accepted that computers today can not factor big integers into primes in an ef-
ficient manner. This is crucial to the security of RSA since, if one is able to factor large
integers into primes, then one is able to find RSA private keys and therefore the cryp-
tosystem is broken. However, quantum computers can perform this task in polynomial
time so when these computers appear RSA will not be secure anymore. Moreover, the
Diffie-Hellman key exchange protocol and many other cryptographic primitives widely
used today will be useless once quantum computers appear [Sho99]. This means that,
in order to mantain our communications secure, we need new cryptosystems whose
security is based in problems that can not be solved neither by classical computers nor

LIST OF ALGORITHMS

quantum computers.
There are many problems that we can rely on to build quantum secure cryptosystems

[BBD08]. The one of interest to us is that of finding the solutions of a quadratic multi-
variate polynomial system over a finite field, whose associated decisional problem is an
NP-complete [GJ90], and public key cryptosystems whose security is based on the com-
putational difficulty of solving this problem are within the field of Multivariate Public
Key Cryptography (MPKC) [DGS06]. In these systems the public key is usually a tuple
of multivariate quadratic polynomials and encryption is performed by evaluating those
polynomials at the desired message, thus, being able to solve this system (set equal to
some constants) gives us the ability to find secret messages.

Groebner Bases

Given an ideal I of a polynomial ring F[x1, ..., xn], where F is a field, a Groebner basis
of I is a particular finite generating set of I that has some special and useful properties.
In the context of multivariate polynomial rings, a basis for a polynomial ideal is a gen-
erating set of such. This fact, along the name of the thesis advisor of Bruno Buchberger,
the developer of the theory [Buc65], gives the name to Groebner bases. Such basis can
be used to solve many algebraic geometry and computational algebra problems, but the
most important for MPKC is that it allows to find the zeros of polynomial systems quite
efficiently.

A Groebner basis can be computed from any given finite basis and there has been a
lot of work in developing more efficients algorithms to accomplish this. However, as we
pointed out before, solving a system of polynomial equations over a finite field is known
to be a hard computational problem so finding a Groebner basis is a hard computational
problem by itself.

Recall that cryptosystems developed within the frame of multivariate public key
cryptography (MPKC) can be broken if one is able to solve certain system of polyno-
mial equations, therefore, finding a Groebner basis of the ideal generated by those
polynomials is a critical step for breaking such cryptosystems. As mentioned before,
finding a Groebner basis is not an easy task in the general case, however, the polyno-
mial equations that arise from MPKC cryptosystems are far from being general because
of the necessity of leaving a trapdoor for the legitimate user (the private key). Studying
then the complexity of Groebner bases algorithms for the polynomial equations that
arise from a particular cryptosystem has become critical for the security of such, and a
better understanding of the factors affecting the computation has became imperative.
A usual way to measure this complexity is to look at some intrinsic properties of the
polynomial system known as the degree of regularity and the falling degree, which
we will explain in detail.

Contribution

There are MPK signature schemes that are both, efficient and secure [DS05]. However,
there is no such luck with MPK encryption schemes, and many efforts have been made
for developing such. One of the leadings ideas for building these cryptosystems is that

10

List of Algorithms

used in HFE [Pat96], which consists of hiding certain easy to invert function over a
large field with two affine transformations over a small field. Unfortunately, HFE (and
some related schemes) got broken with two mainstream attacks: a min-rank attack by
Faugère et al. [BFP13] (which improves Kipnis-Shamir attack [KS99]) and a Direct
Algebraic Attack [FJ03] by Faugère and Joux over the binary field.

ZHFE is one of many MPK cryptosystems that arose from this idea. It was presented
in 2014 by Porras et al. [PBD15] and it was very well received by the MPKC community
for its new and creative idea. Unfortunately, it had efficiency issues in its very beginning.
Almost one year after its release, an improvement on the efficiency of ZHFE and a
security analysis based in the min-rank were published [BCE+16, PS16]. Although the
former gave a hope on the future of ZHFE as a usable primitive, the latter showed a
weakness on the cryptosystem that led to the necessity of reformulating it.

New ideas trying to avoid the MinRank attack and the Direct Algebraic Attack began
to appear. In this work, we introduce new alternatives based on degree 3 polynomials,
which has not been seen in the subject before. Surprisingly, we could develop a MinRank
attack in the cubic case, which was not expected since we do not have a standard way
of representing “cubic forms”. Following this, we propose a variation that is vulnerable
to a Direct Algebraic Attack. We study the reason why this attack works and based
on this develop what we call “a second layer” that can increase the so-called falling
degree up to a desired value. This concept, the Falling Degree, has served as measure
of the level of security of MPK Cryptosystems. Nevertheless, we show that we must be
careful when analyzing MPK Cryptosystems by means of this value by developing an
“intelligent” algebraic attack on the latter construction.

As mentioned above, Groebner bases play a big role in this analysis as well as the
degree of regularity and the falling degree of the systems generated in this New Alter-
native. These concepts are addressed in detail in this work.

Outline

This work is divided into two main parts. Part I is an attempt to summarize a lot
of the theory known about Groebner Basis. It begins with chapter 1 which includes
the basic theoretical definitions and properties of Groebner bases and then we discuss
how to compute them in chapter 2. In chapter 3 we talk about the techniques used to
estimate the arithmetical complexity of Groebner basis algorithms, including the degree
of regularity and the falling degree.

Part II presents the contributions of this work. Chapter 4 gives necessary concepts
from cryptography and discusses previous work on the subject. In chapter 5 we present
the construction of some multivariate public key cryptosystems and related attacks.

Acknowledgments

I would like to thank Professor Daniel Cabarcas for his supervision throughout this
work. Many thanks also to Professor John Bayron Baena, Professor Felipe Cabarcas,

11

LIST OF ALGORITHMS

PhD Jaiberth Porras and PhD student Javier Verbel, for the fruitful seminar meetings we
had at the university.

This work was partially supported by “Fondo Nacional de Financiamiento para la
Ciencia, la Tecnoloǵıa y la Innovación Francisco José de Caldas”, Colciencias (Colom-
bia), Project No. 111865842333 and Contract No. 049-2015.

I must also thank Cristina Ochoa, whose unconditional support has proven to be
substantial for the culmination of this work and my studies in general.

12

Part I

Groebner Bases

Chapter 1

Groebner Bases: Definitions and
Results

In this chapter, we state our main object of study: Groebner bases. We show its
existence, some of its properties and its usefulness.

In few words, a Groebner basis of an ideal is a finite generating set of such that
gives us information about it in a much deeper way than almost any other basis can do.
Groebner bases allow us to obtain a lot of information about the ideal by only looking at
them. For instance, all the elimination ideals can be known, and unique representatives
for quotient rings can be obtained. A very interesting property of the ideal (perhaps,
the most important) that we can read from a Groebner basis is the variety, and this
application is basically why we care about Groebner bases in cryptography.

This is a very extensive subject that generalizes to other algebraic structures, how-
ever, in this work, we will be interested only in the theory of Groebner bases for poly-
nomial rings over a field.

1.1 Basic Definitions

As a general notation throughout this work we let R denote the multivariate polynomial
ring F[x1, . . . , xn], where F is a field (not necessarily finite, nor algebraically closed). A
monomial is any product of the form xa11 · · ·xann , with (a1, . . . , an) ∈ Nn (in this work,
N = {0, 1, 2, 3, . . .}). We usually write

xα := xα1
1 · · ·xαnn and |α| :=

n∑
i=1

ai,

where α = (a1, . . . , an) ∈ Nn. We denote by M the set of all monomials of R. Notice
that

R =
⊕
α∈M

Fxα

and hence each polynomial f ∈ R can be written uniquely as

f =
∑
xα∈M

aαx
α,

CHAPTER 1. GROEBNER BASES: DEFINITIONS AND RESULTS

where almost all aα ∈ F are equal to zero.

Definition. A monomial order is any relation ≺ onM such that

(i) ≺ is a total order (every two distinct elements are comparable);

(ii) If xα, xβ, xγ ∈M, then xα ≺ xβ implies xα · xγ ≺ xβ · xγ;

(iii) ≺ is a well order.

Remark. Clearly, a monomial order can be uniquely identified with a total well-order
over Nn that respects addition, and ≺ will denote both, indistinctly.

A Groebner basis will depend on the monomial order chosen, and the time needed
for its computation has this dependence too. Some common monomial order are the
following. Let α, β ∈ Nn,

• Lexicographic order (lex): α ≺lex β if and only if the leftmost nonzero entry of
β−α is positive. This has the advantage of being a particular case of an elimination
order that we can use elimination theory methods with.

• Reverse lexicographic order (rlex): α ≺rlex β if and only if the rightmost nonzero
entry of β − α is negative. This order is useful for moving from affine spaces to
projective spaces (polynomial homogenization).

• Graded reverse lexicographic order (grevlex): α ≺grevlex β if and only if |α| < |β|
or |α| = |β| and α ≺rlex β. This order bounds the total degree during the division
algorithm. More generally, let ≺ be any monomial order, we define ≺′ as follows:
α ≺′ β if and only if |α| < |β| or |α| = |β| and α ≺ β. We say that ≺′ is the graded
order of ≺, and it is a particular type of an order that refines the degree.

• Consider the ring R[X] of univariate polynomials in x with real coefficients. Let
P be the subset of this ring formed by all polynomials whose leading coefficient is
positive, and define for all f, g ∈ R[X] : f C g if and only if g − f ∈ P . It can be
easily seen that this is a linear order in R[X] that extends the natural order in R
and satisfies r C X for all r ∈ R. Let g1, . . . , gn ∈ R[X] be Q−linearly independent
polynomials and define the following relation on Nn :

(a1, . . . , an) ≺ (b1, . . . , bn)⇐⇒
n∑
i=1

aigi C
n∑
i=1

bigi,

one easily sees that this is a monomial order, that we call monomial order in-
duced by (g1, . . . , gn). This may seem as a very particular type of monomial or-
ders, but in fact, every monomial order can be obtained with this procedure. For
instance, lexicographic order is induced by (Xn−1, . . . , X, 1) and reverse lexico-
graphic is induced (quite unsurprisingly) by (1, X, . . . , Xn−1).

From now on, unless otherwise stated, we fix a monomial order ≺.

16

1.2. A Division Algorithm in F[x1, . . . , xn]

Definition. Let f =
∑

xα∈M aαx
α be a nonzero polynomial in R.

(i) The support of f is supp(f) := {xα : aα 6= 0};

(ii) The exponent of f is exp(f) := max≺(α : aα 6= 0);

(iii) The leading monomial of f is LM(f) := max≺(supp(f)) = xexp(f);

(iv) The leading coefficient of f is LC(f) := aα with α = exp(f);

(v) The leading term of f is LT(f) := LC(f) LM(f);

(vi) The degree of f is deg(f) :=
∑n

i=1 ai, where (a1, . . . , an) = exp(f).

By convention:

(i) exp(0) := −∞, which is smaller than any α ∈ Nn;

(ii) LM(f) = LT(f) := 0.

Note that the previous definition depends on the monomial order chosen. However,
for the sake of simplicity, this is not being considered in the notation.

Example. Consider the case n = 4 and F = R, with the order being the lexicographical
order. Let f be the polynomial

f = 5 · x2
1x

3
2x

1
3x

1
4 + 3 · x4

2x
2
3x

3
4 − 5 · x2

2x
1
3x

5
4.

Note that this polynomial has been written in decreasing lexicographic order since

(2, 3, 1, 1) �lex (0, 4, 2, 3) �lex (0, 2, 1, 5).

Also, we have

supp(f) = {x2
1x

3
2x

1
3x

1
4, x

4
2x

2
3x

3
4, x

2
2x

1
3x

5
4}, exp(f) = (1, 3, 1, 1),

LM(f) = x2
1x

3
2x

1
3x

1
4, LC(f) = 5, LT(f) = 5 · x2

1x
3
2x

1
3x

1
4.

1.2 A Division Algorithm in F[x1, . . . , xn]

In this section we will generalize the classical euclidean algorithm for n = 1, having a
loss in the uniqueness of the quotient and remainder. We will see later that a Groebner
basis is precisely a basis where uniqueness of the remainder is guaranteed.

Theorem 1.2.1. Let F = (f1, . . . , fm) be an ordered m−tuple of nonzero polynomials in
R, and for each i let αi := exp(fi). Then, for every f ∈ R there exist unique polynomials
q1, . . . , qm, r ∈ R such that

f = q1f1 + · · ·+ qmfm + r

17

CHAPTER 1. GROEBNER BASES: DEFINITIONS AND RESULTS

where

qi ∈
⊕

α∈∆i−αi

Fxα with ∆i := (αi + Nn) \
i−1⋃
j=1

(αj + Nn)

and

r ∈
⊕
α∈∆

Fxα with ∆ := Nn \
m⋃
i=1

(αi + Nn).

Moreover, we have
exp(f) � exp(qifi), exp(h).

Proof. We first show uniqueness. Given any two decompositions of this type, we can
subtract them to obtain a decomposition for the polynomial 0, hence, it suffices to show
that the only decomposition for the zero polynomial is the trivial one, given by qi, r = 0.
Notice that Nn = ∆1t· · ·t∆mt∆ (disjoint union) and since exp(qifi) ∈ ∆i, exp(r) ∈ ∆,
we can conclude that

exp(f) = max {exp(q1f1), . . . , exp(qmfm), exp(r)} .

In particular, if f = 0, then qi = 0 for all i and h = 0, which proves uniqueness. Actually,
this also shows that exp(f) � exp(qifi) and exp(f) � exp(h).

We now show existence for f 6= 0. Suppose that f has some term that is divisible
by some LM(fi) and take the greatest of all these terms, say cxα LT(fi) with c ∈ F∗ and
α ∈ Nn. Assume that i is the smallest index with this property, then α + αi ∈ ∆i and
therefore α ∈ ∆i − αi. Now we apply the same procedure to f ′ := f − cxαfi instead of
f . Notice that, due to the maximality of cxα LT(fi), if c′xα′ LT(fi′) is a term of f ′ then it
is strictly smaller than cxα LT(fi).

Since ≺ is a well order, this process must eventually stop. At this point, by grouping
terms, we obtain polynomials q1, . . . , qm of the desired shape such that r := f − q1f1 −
· · · − qmfm has no terms divisible by some LT(fi), hence r ∈ ⊕α∈∆Fxα.

Remark. The process we just described for finding this decomposition is known as the
division algorithm. Uniqueness of the outputs of this algorithm is guaranteed only if,
on each iteration, we take the less index i such that some term of f is divisible by
some LM(fi). If we drop this restriction, uniqueness of the quotients qi will be lost, but
uniqueness of r can be kept if the set G = {f1, . . . , fm} is a Groebner basis, as we will see
later on the chapter. Also, notice that this algorithm is precisely the classical euclidean
division algorithm when n = 1 and s = 1, however, in the general case, we allow
division by a set of polynomials (rather than only one polynomial) and division steps
are performed using any monomial of the divisors, not only the leading monomials.
Division algorithm is included as algorithm 1

We have to keep in mind that the outputs of this algorithm, the quotients qi’s and
the remainder r, depend on the order of the fi’s. Different tuples of divisors can lead
to different quotients and remainders, even if the tuples share the same polynomials. A
more subtle fact is that these output depend on the monomial order chosen: different
orders can lead to different quotients and remainders.

18

1.3. Dickson’s Lemma and Hilbert Basis Theorem

Algorithm 1: Polynomial division
Input: f ∈ R, (f1, . . . , fm) ∈ (R \ {0})m
Output: (q1, . . . , qm) ∈ Rm and r ∈ R satisfying the conclusion of theorem 1.2.1

1: q1 := 0, . . . , qm := 0, r := 0
2: p := f
3: while p 6= 0 do
4: i := 1
5: division occurred := false
6: while i ≤ m and division occurred = false do
7: if LT(fi) divides LT(p) then
8: qi := qi + LT(fi)/LT(p)
9: p := p− (LT(fi)/LT(p))fi

10: division occurred := true
11: else
12: i := i+ 1
13: if division occurred = false then
14: r := r + LT(p)
15: p := p− LT(p)
16: return (q1, . . . , qm), r

Let f1, . . . , fm ∈ R, consider the ideal generated by these polynomials

I := 〈f1, . . . , fm〉

and let f ∈ R. Let r be the remainder upon division by (f1, . . . , fm) using the division
algorithm stated before. It is clear that if r = 0, then f ∈ I. However, this is not a
necessary condition in general, i.e., remainder can be nonzero even if the dividend lies
on the ideal generated by the divisors.

This shows that division algorithm does not determine whether a polynomial lies in
a given finitely generated ideal or not, in contrast to the univariate case. Nevertheless,
there are ‘good’ finite generating sets that possesses the following property: f lies in
the ideal generated by this set if and only if remainder of division by this set is zero (no
matter how the elements of this set are listed). These ‘good’ finite generating sets are
what we will call Groebner bases.

1.3 Dickson’s Lemma and Hilbert Basis Theorem

Hilbert basis theorem is a classical and important result in algebraic geometry, it states
that all ideals of R are finitely generated. Although there are many ways to prove this
result, we present a proof that uses an important lemma called Dickson’s lemma, which
will imply the existence of Groebner bases by its own. We need at first some definitions.

Definition. A monomial ideal is an ideal of R that is generated by monomials. More
precisely, I is a monomial ideal if there exists A ⊆M such that I = 〈A〉.

19

CHAPTER 1. GROEBNER BASES: DEFINITIONS AND RESULTS

Remark. By convention, the ideal generated by the empty set is R, so it is in particular
a monomial ideal.

Monomial ideals play a central role in the theory since the definition of Groebner
basis we will give is involved with this type of ideals. We now state an important
property that monomial ideals have, which is crucial in order to prove Dickson’s lemma
and has further applications by its own.

Proposition 1.3.1. Let I be a monomial ideal of R. Then f lies in I if and only if
supp(f) ⊆ I.

The proof of this proposition follows easily from the fact that the monomials of a
monomial ideal are precisely the R−multiples of its generators. Notice that for an ideal
I of R (not necessarily a monomial ideal) the condition stated by this proposition may
not hold, i.e., there can be f ∈ I with some terms outside I. In order to see this, take
for example F = R, n = 2 and I = 〈x + y〉, then x + y ∈ I but x /∈ I. This condition
is what makes monomial ideals important, since it implies that a monomial ideal is
characterized by the monomials it contains, i.e., two monomial ideals are the same if
and only if they contain the same monomials.

Definition. We define the partial order | over Nn as follows. For α = (a1, . . . , an) and
β = (b1, . . . , bn) in Nn,

α | β ⇐⇒ ∀i : ai ≤ bi.

The notation is consistent with the divisibility relation on the monomials, that is,
α | β if and only if xα divides xβ. The following is an easy to prove proposition.

Proposition 1.3.2. Every nonempty subset M ⊂ Nn has a | −minimal element. In partic-
ular, for each β ∈M there exists a | −minimal element α of M such that α | β.

As a corollary, any nonempty subset M ⊂ Nn satisfying M + Nn = M is determined
by its | −minimal elements:

M =
⋃

α |−min

(α + Nn).

We are now ready to state and prove a combinatorial version of Dickson’s lemma.

Lemma 1.3.3. (Combinatorial Dickson’s lemma). Let M be a nonempty subset of Nn,
then M has a finite number of | −minimal elements.

Proof. We proceed by induction on n. For n = 1, the result is trivial. Assume that the
result holds for n− 1, we now show that it must hold for n. Let α = (a1, . . . , an) ∈M be
a | −minimal element of M , any other | −minimal element of M must lie in the set

M \ (α + Nn) =
n⋃
i=1

Aia

with

Aia =

ai⋃
a=0

{(c1, . . . , cn) ∈M : ci = a} .

20

1.3. Dickson’s Lemma and Hilbert Basis Theorem

Let β = (b1, . . . , bn) be another | −minimal element of M , and let i be such that
bi < ai, then β is a | −minimal element of Aibi. Let πi be the projection from Nn onto
Nn−1 that drops the i−th entry, we claim that πi(β) is a | −minimal element of πi

(
Aibi
)
.

Indeed, if there exists γ = (c1, . . . , cn) ∈ Aibi with πi(γ) | πi(β) but πi(γ) 6= πi(β), given
that ci = bi, we obtain that γ | β but γ 6= β, a contradiction since β is a | −minimal
element of Aibi.

By the induction hypothesis, there is a finite number of | −minimal elements of Aibi
for each i, hence, there is a finite number of | −minimal elements of M .

Corollary 1.3.4. Let ≺ be a total order that respects addition on Nn. The following are
equivalent.

(i) ≺ is a well order (every nonempty subset of Nn has a minimal element);

(ii) 0 ≺ α for all nonzero α ∈ Nn;

(iii) For all α, β ∈ Nn, if α | β and α 6= β, then α ≺ β

Proof. Suppose that 0 ≺ α for all nonzero α ∈ Nn, if α, β ∈ Nn are such that α | β and
α 6= β, then β − α is nonzero and lies in Nn, hence 0 ≺ β − α and therefore, since ≺
respects addition, α ≺ β. Conversely, if 0 ≺ α and (iii) holds, since 0 | α and α 6= 0 we
obtain that 0 ≺ α. This shows that (ii) is equivalent to (iii).

Suppose that there exists α ≺ 0, then · · · ≺ 3α ≺ 2α ≺ α is an infinite decreasing
sequence, then ≺ can not be a well order. This shows that (i) implies (ii).

Finally, we show that (iii) implies (i). Suppose that (i) does not hold, that is, there
exists an infinite chain r1 � r2 � r3 � · · · . If ri | ri+1 we would have by the hypothesis
that ri ≺ ri+1, which is absurd, hence ri - ri+1. Consider the sets

Ti :=
i⋃

j=1

(ri + Nn) ,

we obtain a strictly increasing chain T1 (T2 (T3 (· · · of subsets of Nn that satisfy
Ti + Nn = Ti. By lemma 1.3.3, T := ∪∞i=1Ti has a finite number of | −minimal elements,
say m1, . . . ,m`. Let j be such that all of these elements lie in some Tj, since T +Nn = T ,
it is characterized by its minimal elements:

T =
⋃̀
i=1

(mi + Nn) ⊆ Tj ⊆ T

and therefore Ti = Tj for all i ≥ j, which is absurd.

This corollary shows that we can replace condition (iii) in the definition of a mono-
mial order by any of the following:

• 1 ≺ xα for all xα ∈M \ {1};

• For all xα, xβ ∈M, if xα divides properly xβ, then xα ≺ xβ.

21

CHAPTER 1. GROEBNER BASES: DEFINITIONS AND RESULTS

Lemma 1.3.5. (Dickson’s lemma). Let I be a monomial ideal, say I = 〈A〉 withA ⊆M,
then there exists a finite subset B ⊆ A such that I = 〈B〉.
Proof. If A = ∅ the result is trivial, so assume this is not the case. Let

M = exp {α ∈ Nn : xα ∈ A} 6= ∅.

By lemma 1.3.3, M has a finite number of | −minimal elements, say m1, . . . ,m`. We
claim that I = 〈B〉, where B = {xm1 , . . . , xm`} ⊆ A.

Indeed, by proposition 1.3.1, it suffices to see that every xα ∈ A lies in 〈B〉, but
this is trivial since in this case α ∈ M so mi | α for some i, hence xmi divides xα and
therefore xα ∈ 〈B〉.

Dickson’s lemma says that monomial ideals are finitely generated, which is in some
sense a particular case of Hilbert basis theorem. However, the latter follows easily from
the former, as we now show.

Theorem 1.3.6. (Hilbert basis theorem). Let I be an ideal of R, then I is finitely
generated.

Proof. Assume I 6= {0}, for if this does not hold, the result is trivially true. Let LM(I)
be the set of all leading monomials of the polynomials in I, then 〈LM(I)〉 is a monomial
ideal and therefore, by Dickson’s lemma, there are g1, . . . , gm ∈ I such that

〈LM(I)〉 = 〈LM(g1), . . . ,LM(gm)〉.

We claim that
I = 〈g1, . . . , gm〉

and then, the theorem would be proved. Clearly I ⊇ 〈g1, . . . , gm〉. Let f ∈ I and apply
the division algorithm to divide f by (g1, . . . , gm) to obtain a1, . . . , am, r ∈ R such that

f = a1g1 + · · ·+ amgm + r

and the other conclusions of theorem 1.2.1 hold. Notice that

r = f − a1g1 − · · · − amgm ∈ I.

If r 6= 0, then LM(r) ∈ 〈LM(I)〉 = 〈LM(g1), . . . ,LM(gm)〉 and therefore LM(r) is divisible
by some LM(gi), which contradicts the conclusions of theorem 1.2.1. Hence r = 0 and
therefore

f = a1g1 + · · ·+ amgm + 0 ∈ 〈g1, . . . , gm〉,
this finishes the proof.

Recall that a ring A is said to be Noetherian if one of the following equivalent
conditions holds,

(i) Every ideal of A is finitely generated;

(ii) Every nonempty set of ideals of A has a maximal element;

(iii) Every increasing chain of ideals of A eventually stabilize.

The previous theorem shows that R satisfy condition (i), hence, it is Noetherian. In
particular, every increasing chain of ideals of R eventually stabilize. This fact will be
used in several consequent proofs.

22

1.4. Groebner Bases

1.4 Groebner Bases

We now turn our attention to Groebner bases, we show their existence and some useful
properties they possess. At the end of the section, we show the existence of certain type
of Groebner bases that happen to be unique.

Definition. Let I be an ideal of R. We say that {g1, . . . , gm} ⊆ I is a Groebner basis of I
if

〈LM(g1), . . . ,LM(gm)〉 = 〈LM(I)〉,

where LM(I) is the set of all leading monomials of the polynomials in I.

As expected, it turns out that Groebner bases are bases, i.e., they generate the ideal
being considered. This fact, along the existence of Groebner bases, are shown in the
following proposition.

Proposition 1.4.1. Let I be a nonzero ideal of R, then I has a Groebner basis and such a
set is indeed a basis for I.

Proof. Actually, we have already proven it, we only need to take a look at the proof of
Hilbert Basis theorem. As we saw there, 〈LM(I)〉 is finitely generated by some LM(gi)’s,
with each gi ∈ I, so Groebner bases do exist. Also, using the division algorithm we saw
that this condition implies that I = 〈g1, . . . , gm〉, so Groebner bases are indeed bases.

Remark. Due to this proposition, we can call a Groebner basis G of I simply a Groebner
basis, since it is a basis of 〈G〉

We mentioned before that Groebner bases are ‘good’ bases since they have the fol-
lowing property: f lies in the ideal generated by this set if and only if remainder of
division by this set is zero. Although the definition we gave seems not to be related with
this property, those are actually equivalent, as we now show.

Proposition 1.4.2. Let {g1, . . . , gm} be a subset of an ideal I of R. Then G is a Groebner
basis if and only if for all f ∈ I, the remainder of division of f by (g1, . . . , gm) is zero.

Proof. (⇒). Let f ∈ I and suppose g ∈ I and r ∈ R are such that f = g + r and
no monomial of r is divisible by any LM(gi). Suppose r 6= 0. Since r = f − g ∈ I,
LM(r) ∈ 〈LM(I)〉 = 〈LM(g1), . . . ,LM(gm)〉 so LM(r) is divisible by some LM(gi), which
contradicts the assumption. In particular, since division algorithm yields an expression
of this form, we have that the remainder of division of f by (g1, . . . , gm) is zero.

(⇐). We show that 〈LM(I)〉 ⊆ 〈LM(g1), . . . ,LM(gm)〉. Let f ∈ I, apply division
algorithm, theorem 1.2.1, to divide f byG. By hypothesis, the remainder of this division
is zero, we obtain then q1, . . . , qm ∈ R satisfying the conclusion of theorem 1.2.1. As we
saw in the proof of this theorem, this implies that

exp(f) = max {exp(q1f1), . . . , exp(qmfm)}

and therefore LM(f) = LM(qi) LM(fi) for some i, thus LM(f) ∈ 〈LM(g1), . . . ,LM(gm)〉.

23

CHAPTER 1. GROEBNER BASES: DEFINITIONS AND RESULTS

Corollary 1.4.3. Remainders of division algorithm with Groebner bases as divisors are
unique, no matter how the elements are listed.

Proof. Suppose that G is a Groebner basis and let f ∈ R. Suppose that r ∈ R and r′ ∈ R
are remainders of f upon division by G (with G possibly listed in different orders), then
we can write

f = g + r, f = g′ + r′

where g, g′ ∈ I and no monomial of r and r′ is divisible by any element of LM(G). This
implies that

0 = (g′ − g) + (r − r′)

where r − r′ satisfy the same property. Since 0 and g − g′ lie in I, the proof of the first
implication in the previous theorem implies that r − r′ = 0, i.e., r = r′.

The consequences of the previous corollary are very important. Let I be an ideal of
R, and G be a Groebner basis of I, then for all f, g ∈ R such that f − g ∈ I we have
that the remainder is zero. Since the remainder is linear on its inputs, the remainder of
f and g must be the same. In other words, the remainder of every polynomial is well
defined modulo I, so we have a unique way to represent the elements of the quotient
ring R/I.

We now analyze uniqueness of Groebner bases. It can be easily seen that Groebner
bases are not unique in general, for example, if G is a Groebner basis of an ideal I, it is
clear that G ∪ {f} is a Groebner basis of I for all f ∈ I. Even more subtle redundancy
can be found if there is p ∈ G such that LM(p) ∈ 〈LM(G − {p})〉, since in this case it
can be easily shown that G − {p} is also a Groebner basis of I. To avoid this kind of
redundancy, we remove all p ∈ G satisfying the previous condition and for simplicity
we set all the polynomials in G to be monic. This procedure leads to the concept of
minimal Groebner basis.

Definition. Given an ideal I of R and a Groebner basis G of I, we say that G is a
minimal Groebner basis if every g ∈ G is monic and for all p ∈ G, LM(p) /∈ 〈LM(G−{p})〉.

Let G = {g1, . . . , gm} be a minimal Groebner basis of I, and let αi := exp(gi) for
each i. It can be easily seen that the {α1, . . . , αm} is precisely the set of | −minimal
elements of exp(I), so these exponents are intrinsic to I. In particular, any two minimal
Groebner basis have the same cardinality. However, although the exponents in a min-
imal Groebner bases are unique, the basis per se is still not unique, this is easily seen
since the definition only involves leading monomials, thus, anything can happen in the
other terms of the polynomials. For instance, if F = R, n = 2, f1 = x2 + axy, f2 = xy
and f3 = y2 − (1/2)x, one can verify that {f1, f2, f3} is a minimal Groebner basis of
I = 〈x2, f2, f3〉, for each a ∈ R.

We can tighten the previous definition to obtain a particular type of minimal Groeb-
ner bases, which happens to be unique.

Definition. Given an ideal I of R and a Groebner basis G of I, we say that G is a
reduced Groebner basis if every g ∈ G is monic and for all p ∈ G, no monomial of p lies
in 〈LM(G− {p})〉.

24

1.5. Some Applications of Groebner Bases

It is clear that minimal Groebner bases exist, however, this is not so clear with re-
duced Groebner bases. This, along uniqueness, is shown in the following proposition.

Proposition 1.4.4. Let I 6= 0 be a polynomial ideal, then I has a unique reduced Groebner
basis.

Proof. Let G = {g1, . . . , gm} be a minimal Groebner basis of I, and let αi := exp(gi) for
each i, by changing the numeration, we can assume that α1 ≺ α2 ≺ · · · ≺ αr. Now we
replace iteratively each gi by its remainder when it is divided by (g1, . . . , gi−1), then we
can see inductively that

gi ∈ xαi +
⊕
α∈∆
α≺αi

Fxα

with ∆ = Nn \ exp(I). From this it follows easily that the ‘new’ G is a reduced Groebner
basis.

We now show uniqueness. Suppose that {f1, . . . , fm} is another reduced Groebner
basis of I, then for all i

fi − gi ∈ I ∩

(⊕
α∈∆

Fxα
)

= {0}

so fi = gi.

1.5 Some Applications of Groebner Bases

In this chapter, we show some of the main applications of Groebner bases, making a
particular emphasis on the problem of solving algebraic systems, since this is the main
application of Groebner bases in cryptography.

1.5.1 The Ideal Membership Problem

Given an ideal I or R, this problem is concerned in deciding whether a given polynomial
p ∈ R lies in I or not. In the univariate case, the problem is completely solved by the
division algorithm, since in this case remainders on division algorithm are unique and
any ideal is generated by any of its polynomials of smallest degree, so we only need to
perform division on p by one of these polynomials and then p will lie in the ideal if and
only if the remainder of this division is zero. However, as we noticed previously, when
n > 1 the division algorithm is an imperfect generalization of its univariate version since
remainders (and quotients) are not unique in general. Corollary 1.4.3 shows that this
issue is not present when we have Groebner bases as divisors, and in this case, we can
proceed as in the univariate case.

1.5.2 The Ideal Equality Problem

Given two polynomial ideals I, J of R, this problem aims to determine whether I = J .
Keeping in mind the previous section, there is a direct approach to solve this problem,
which consists on finding a Groebner basis for each ideal and then verifying if every

25

CHAPTER 1. GROEBNER BASES: DEFINITIONS AND RESULTS

polynomial of each basis lies in the other ideal; this, by the previous application, is
an efficient computation. However, proposition 1.4.3 shows that we can compute a
reduced Groebner basis for each ideal and then those ideals will be the same if and only
if these bases are so. Computing a reduced Groebner basis from any minimal Groebner
basis is an efficient task that can be accomplished by means of algorithm 2.

Algorithm 2: Computation of reduced Groebner bases
Input: G a minimal Groebner basis of 〈G〉
Output: A reduced Groebner basis of 〈G〉

1: F := G
2: p := f
3: for g ∈ F do
4: g′ := remainder on division of g by G
5: G := (G \ {g}) ∪ {g′}
6: return G

1.5.3 Elimination Theory

Definition. Let I ⊆ R be a polynomial ideal. For any 0 ≤ j < n, we define the j-th
elimination ideal of I as the ideal of F[xj+1, . . . , xn] given by

I(j) := I ∩ F[xj+1, . . . , xn].

It is easy to see that I(j) is indeed an ideal of F[xj+1, . . . , xn]. Also, notice that R(j) =
F[xj+1, . . . , xn] and I(0) = I.

Definition. An elimination order of the variables x1, . . . , xn is a monomial order ≺ of
R[y1, . . . , ym] such that, for all monomials xα1yβ1 and xα2yβ2, it holds that xα1 ≺ xα2 im-
plies xα1yβ1 ≺ xα2yβ2. Such an order is also called a block order y1, . . . , ym � x1, . . . , xn.

Example. Given any two monomial orders ≺1 and ≺2 on F[x1, . . . , xn] and F[y1, . . . , yn]
respectively, we can always construct a block order y1, . . . , ym � x1, . . . , xn as follows:
let xα1yβ1 ≺ xα2yβ2 if and only if xα1 ≺1 x

α2 or xα1 = xα2 and yβ1 ≺2 y
β2.

These monomial orders are of particular importance since they preserve Groebner
bases when we project over the elimination ideals:

Theorem 1.5.1. (Elimination theorem). [CLO07, Thm 2, §1, Chap 2] Let I be a poly-
nomial ideal of F[x1, . . . , xn, y1, . . . , ym] and let G be a Groebner basis for I with respect to
a block order y1, . . . , ym � x1, . . . , xn. Then G(n) = G ∩ F[y1, . . . , ym] is a Groebner basis
for I(n) as an ideal of R(n) = F[y1, . . . , yn].

In particular, since any lex order with x1 �lex x2 �lex · · · �lex xn is a block order
xj+1, . . . , xn � x1, . . . , xj for all 1 ≤ j < n , we have the following corollary.

26

1.5. Some Applications of Groebner Bases

Corollary 1.5.2. Let I be a polynomial ideal of R and let G be a Groebner basis for I with
respect to lex order with x1 �lex x2 �lex · · · �lex xn. Then G(j) is a Groebner bases for I(j)

as an ideal of R(j).

Thanks to this proposition, now we can compute I(j) for any ideal I, just by comput-
ing a Groebner basis of it and looking for polynomials in the variables xj+1, . . . , xn.

Theorem 1.5.3. (Closure theorem). Let I be an ideal in R and let 0 ≤ j < n. Let
πj : Fn → Fn−j be the projection given by (a1, . . . , an) 7→ (aj+1, . . . , an). Then V(I(j)) is
the closure of πj(V(I)) in Fn−j with the Zariski topology.

1.5.4 Solving Systems of Polynomial Equations

This problem deals with finding the common roots of a set of polynomials, if they exist.
This is the most important application of Groebner bases to cryptography.

In linear algebra, the general situation for linear systems with equal number of equa-
tions and variables is that the number of solutions equals one. Moreover, when there
are less equations than variables, we usually have an infinite number of solutions and
when there are more equations than variables, no solutions are expected. Surprisingly,
this behavior is also present with polynomial systems (not necessarily linear). More
precisely, an overdetermined polynomial system is expected to possess no solutions, an
undetermined polynomial system is expected to possess an infinite number of solutions,
and those who have equal number of polynomials and variables are expected to have
a finite number of solutions, bounded by Bézout bound (unique solution is not guaran-
teed here). This will be seen in more detail in chapter 3, when we study regular and
semi-regular sequences.

This is not the only analogy of solving linear systems to solving nonlinear polynomial
systems. When we have a linear system Ax = b, we perform some “legal” operations
on the linear polynomials that guarantee two things: the solutions will not be changed,
and these are much more easy to read from the obtained linear polynomials than it was
from the original (triangular form, for instance); the key point here is that the solutions
are shared among all the bases of the vector space spanned by the linear expressions,
so finding new “structured” bases will help us get the solutions.

In polynomial system solving it is not enough to consider the vector space spanned
by the polynomials, and this role is actually taken by the ideal generated by them.
Moreover, structured bases for the vector space will be played by Groebner bases, and
the Gaussian reduction that let us obtain new structured bases for the vector space will
be replaced by Groebner basis algorithms.

More precisely, it can be easily seen that the solutions to the system (f1 = 0, . . . , fm =
0) are the same to (g1 = 0, . . . , gs = 0) whenever 〈f1, . . . , fm〉 = 〈g1, . . . , gs〉, so we can
compute these solutions using any basis of the ideal 〈f1, . . . , fm〉.

Definition. A polynomial system (f1 = 0, . . . , fm = 0) is said to be zero-dimensional if it
has finitely many solutions.

As we will show, computing the solutions of (g1 = 0, . . . , gs = 0) when {g1, . . . , gs} is
a reduced lex Groebner basis and the system is zero-dimensional is a very efficient task,

27

CHAPTER 1. GROEBNER BASES: DEFINITIONS AND RESULTS

basically because like Guassian reduction, a Groebner basis has a triangular form. Thus,
in order to find the solutions to (f1 = 0, . . . , fm = 0) for given f1, . . . , fm ∈ R, we simply
compute a reduced Groebner basis {g1, . . . , gs} for 〈f1, . . . , fm〉 and then compute the
solutions to (g1 = 0, . . . , gm = 0).

We dedicate what is left in the section to show how to compute the solutions in this
case.

Proposition 1.5.4. Let (f1 = 0, . . . , fm = 0) be a zero-dimensional system and G =
{g1, . . . , g`} be a minimal Groebner basis of I = 〈f1, . . . , fm〉 with respect to lexicographical
order with x1 �lex x2 �lex · · · �lex xn, such that LM(g`) ≺lex · · · ≺lex LM(g1). Then
g` ∈ F[xn] and there exists a strictly increasing sequence 1 = i1 < i2 < . . . < in = `,
such that for all j ∈ {1, . . . , n − 1} and all k ∈ {ij, . . . , ij+1 − 1}, gk ∈ F[xj, . . . , xn] and
gk /∈ F[xj+1, . . . , xn]. More graphically,

G =

g1(x1, . . . , xn)
...

gi2−1(x1, . . . , xn)
gi2(x2, . . . , xn)

...
gi3(x3, . . . , xn)

...
g`−1(xn−1, xn)

g`(xn)

.

When the ideal is radical, this proposition can be strengthened as follows.

Lemma 1.5.5. (Shape lemma [GM89]). Let I be a radical ideal. Then, after most linear
changes of coordinates the lex reduced Groebner basis for I has the following simplified
structure:

{x1 − g1(xn), x2 − g2(xn), . . . , xn−1 − gn−1(xn), gn(xn)},

where each gi is a univariate polynomial.

The algorithm for solving the system is very straightforward, and, just like the linear
case, it is based in backwards substitution. To solve the system we begin by finding the
common roots of the last set of univariate polynomials, which by taking the greatest
common divisor (using Euclid algorithm) of these can be reduced to the problem of
finding the roots of one univariate polynomial; it must be noted that this problem is
not always trivial, and several research has been devoted to finding roots of univari-
ate polynomials, however, in finite fields, we have Berlekamp’s algorithm and Cantor-
Zanssenhaus algorithm that are decently efficient and make no bottleneck in polynomial
system solving. After this, we substitute each solution obtained into the next set of bi-
variate equations making them univariate; the common roots of these polynomials are
the roots of their greatest common divisor, which again can be computed efficiently us-
ing Euclid algorithm. Finally, we iterate this until all polynomials have been considered.
This procedure is stated more formally below.

28

1.5. Some Applications of Groebner Bases

Proposition 1.5.6. Let G = {g1, . . . , gm} be the reduced Groebner basis of 〈G〉 with re-
spect to lexicographic order with x1 �lex x2 �lex · · · �lex xn. Suppose that the system
(g1 = 0, . . . , gm = 0) is zero-dimensional. Then, the following algorithm computes all the
solutions of this system.

Algorithm 3: Computation of V(g1, . . . , gm)

Input: G = {g1, . . . , gm} a reduced Groebner basis of 〈G〉
Output: The set V(G)

1: if 1 ∈ G then
2: return ∅
3: Let g be the only polynomial in G ∩ F[xn]
4: Sn := {a ∈ F : g(a) = 0}
5: for j := n− 1, n− 2, . . . , 1 do
6: for (aj+1, . . . , an) ∈ Sj+1 do
7: H := {h(xj, aj+1, . . . , an) : h ∈ (G ∩Rj−1) \Rj}
8: p := gcd(H)
9: Sj := Sj ∪ {(a, aj+1, . . . , an) : p(a) = 0}

10: return S1

29

Chapter 2

Computation of Groebner Bases

In this chapter we take a look at the root ideas of the algorithms used today
for computing Groebner bases.

Up to this point, we do not have yet an algorithmic way to construct Groebner
bases. Moreover, we do not even have an algorithmic way to check whether a given
finite generating set is a Groebner basis or not, rather than going to the definition, i.e.,
verifying the equality 〈LM(g1), . . . ,LM(gm)〉 = 〈LM(I)〉.

We present in this chapter some algorithms that allow us to compute a Groebner
Basis from any given basis, along with their theoretical foundations.

2.1 Buchberger’s Algorithm

In this section, we present a characterization of Groebner bases that will lead to a
Groebner basis test, and moreover, to an algorithm to produce such bases. By proposi-
tion 1.4.2, we know that G = {g1, . . . , gm} is a Groebner basis of I if the reminder on
division of every polynomial in I by G is zero. The following proposition shows that
we do not need to check this for every polynomial in I, but only for a finite number of
them.

Proposition 2.1.1. Let g1, . . . , gm ∈ R be such that for all i = 2, . . . ,m and for each
| −minimal element γ of [

i−1⋃
j=1

(αj − αi + Nn)

]⋂
Nn,

the remainder of division of xγgi by (g1, . . . , gm) is zero Then G = {g1, . . . , gm} is a Groeb-
ner basis of I = 〈g1, . . . , gm〉.

Proof. Using proposition 1.4.2, it suffices to show that the remainder on division by
(g1, . . . , gm) is zero for each polynomial in I. Assume that this is not the case: there exists
a nonzero polynomial f ∈ I with a nonzero remainder when divided by (g1, . . . , gm).
Given that f ∈ I, this polynomial can be written as a linear combination of polynomials
of the form xβgi, and since the remainder of division algorithm is linear on the dividend,
there must exist xβgi such that its remainder is nonzero.

CHAPTER 2. COMPUTATION OF GROEBNER BASES

Recall the notation from theorem 1.2.1 with αj := deg gj for each j. If β ∈ ∆i − αi,
then the decomposition xβgi = 0g1 + · · ·+xβgi+ · · · 0gm+0 would satisfy the conclusion
of this theorem and therefore it would be the output of division algorithm, hence, xβgi
would have a zero remainder, which is absurd. It follows that

β ∈

[
i−1⋃
j=1

(αj − αi + Nn)

]⋂
Nn,

we denote this set by B. By proposition 1.3.2, there exist a | −minimal element γ of B
such that γ | β, by the hypothesis we can write

xγgi =
m∑
i=1

qigi

where the qi’s satisfy the conclusion of division algorithm theorem, which in particular
imply that

γ + αi = exp(xγgi) = max{exp(qj) + αj},
and therefore exp(qj)+αj � γ+αi for all j = 1, . . . ,m. Moreover, this inequality is strict
whenever j ≥ i: for if exp(qj) + αj = γ + αi with j ≥ i, then exp(qj) + αj ∈ (αi + Nn),
which contradicts theorem 1.2.1.

Since xβgi has a nonzero remainder and

xβgi =
m∑
j=1

xβ−γqjgj,

there exists i1 ∈ {1, . . . ,m} such that xβ−γqi1gi1 has a nonzero remainder hand hence,
in the expansion of xβ−γqi1 there is a monomial xβ1 with β1 � β − γ + exp(qi1) such that
xβ1gi1 has nonzero remainder. We have that

β1 + αi1 � β − γ + exp(fi1) + αi1 � β + αi,

where the latter inequality is strict whenever i1 ≥ i.
Iterating this procedure, we obtain a sequence (βj, αj) ∈ Nn × {1, . . . ,m} such that

βj+1 + αij+1
� βj + αij

with strict inequality if ij ≤ ij+1. Since ij ∈ {1, . . . ,m}, there exists a constant sub-
sequence of {ij}, and without loss of generality we can assume that such sequence is
the sequence itself. In this case, the α’s cancel out in the previous inequality and the
inequality becomes strict, thus

βj+1 ≺ βj

for all j ∈ N, which is absurd since ≺ is a well order.

A |-minimal element of [
i−1⋃
j=1

(αj − αi + Nn)

]⋂
Nn,

32

2.1. Buchberger’s Algorithm

is a |-minimal element of the finite set {αji : j = 1, . . . , i − 1} where αji := αj − αi but
making the substitution of the negative entries by zeros, that is,

xαji =
lcm(xαi , xαj)

xαi
=

xαj

gcd(xαi , xαj)
.

Definition. Given two polynomials f, g ∈ R, we define the S−polynomial of f and g as

S(f, g) :=
xγ

LT(f)
· f − xγ

LT(g)
· g,

where γ = max{exp(f), exp(g)} so that xγ = lcm(LM(f),LM(g)).

Continuing with our previous discussion, in the first step of the computation of the
remainder of xαjigi, there appear (up to a constant factor) the polynomials S(gi, gj), so it
is sufficient for their remainders to be zero to obtain a Groebner basis, according to the
previous proposition. Moreover, since these S−polynomials lie in the ideal generated
by the gi’s, this becomes a necessary condition. This important property is stated in the
following proposition.

Proposition 2.1.2. (Buchberger’s criterion). Let I be a polynomial ideal and G =
{g1, . . . , gm} a basis for I. Then I is a Groebner basis if and only if for each 1 ≤ i, j ≤ m,
the remainder on division of S(gi, gj) by G is zero.

Buchberger’s criterion gives an efficient algorithmic way to test whether a given fi-
nite generating set is a Groebner basis or not. We can easily use this criterion to produce
Groebner bases from finite generating sets by using algorithm 4, which is known as the
Buchberger’s algorithm. Basically, the algorithm begins with a finite basis for the ideal,

Algorithm 4: Buchberger’s algorithm
Input: f := (f1, . . . , fs) ∈ Rs

Output: A Groebner basis G for 〈f1, . . . , fs〉 with {f1, . . . , fs} ⊆ G
1: G := F
2: repeat
3: for each pair {p, q}, p 6= q in G′ do
4: S := remainder on division of S(p, q) by G′

5: if S 6= 0 then
6: G := G ∪ {S}
7: until G = G′

8: return G

and then adds every S−polynomial that did not go to zero on division by the actual ba-
sis. If the algorithm terminates, then every S−polynomial leaves zero remainder when
divided by the actual basis, so Buchberger’s criterion assures that this basis is actually a
Groebner basis.

The following proposition shows that this algorithm always terminates, and it is ba-
sically a consequence of the fact that R is a Noetherian ring, so it satisfies the ascending
chain condition.

33

CHAPTER 2. COMPUTATION OF GROEBNER BASES

Proposition 2.1.3. Algorithm 4 terminates in a finite number of steps.

Proof. At every loop of the algorithm, we have a basis G and we enlarge it with an
element S(f, g) for some f, g ∈ G with the property that the remainder r on division
of S(f, g) by G is nonzero. Set G′ := G ∪ {r}, we show that 〈LM(G)〉 (〈LM(G′)〉.
Indeed, if these monomial ideals were equal, they would have the same monomials and
therefore LM(r) ∈ 〈LM(G)〉. In this case, we would have that LM(r) is divisible by some
element of LM(G), which contradicts the fact that r is a remainder upon division by G.

The latter shows that every time the algorithm executes a loop, we enlarge an ideal
of R. Since R is a Noetherian ring, this enlargement eventually stops and as we have
shown, this happens precisely when no element is added to the actual basis, i.e., when
the algorithm stops.

2.2 Lazard’s Algorithm

In order to present this algorithm, we need at first some definitions. These will be useful
later in chapter 3, when we analyze the complexity of this algorithm.

R is naturally a graded algebra, that is, it can be written as a direct sum of F−vector
spaces

R =
⊕
d≥0

Rd

such that RsRt ⊆ Rs+t. The natural gradation is that given by

Rd := {f ∈ R : for all xα ∈ supp(f), deg(xα) = d} ∪ {0},

but there are many other gradations. However, this is the only gradation we will use in
this work.

Definition. Let I be an ideal of R. We define Id := Rd ∩ I, and we say that I is an
homogeneous ideal if

I =
⊕
d≥0

Id.

We also denote by I≤d the vector space of polynomials in I of degree at most d. Notice
that if I is homogeneous, then

I≤d =
d⊕
`=0

I`.

If f ∈ Rd, we say that f is a homogeneous polynomial of degree d. Using Hilbert
Basis Theorem (theorem 1.3.6), it can be easily proven that an ideal is homogeneous if
and only if it is generated by finitely many homogeneous polynomials.

Notice that Id, being the intersection of two vector spaces, is a vector space by itself.
Moreover, since the dimension of Rd equals(

n+ d− 1

d

)
,

(which is the number of monomials of total degree equal to d), we conclude that Id is
finite dimensional.

34

2.2. Lazard’s Algorithm

2.2.1 Groebner Bases and Linear Algebra

The idea of using linear algebra to compute Groebner bases dates back to [GM86] and
[Laz83], where the key observation is that an ideal I of R is a F−vector space, as well
as its components Id (in the homogeneous case) and I≤d (in the affine case).

Definition. Let V be a F−linear subspace of R. A subset B of V \ {0} is called a
staggered linear basis of V , if it generates V and B is staggered, i.e., for all f, g ∈ B,
LM(f) = LM(g) implies f = g.

Remark. Notice that a staggered linear basis of V is in particular a Hamel basis of V .

Getting a hold of a staggered linear basis of an ideal of R it leads to a Groebner basis
of it, as the following theorem shows.

Proposition 2.2.1. Let B be a staggered linear basis for an ideal I of R. Then, the set

G := {f ∈ B : for all f 6= g ∈ B,LM(g) does not divide LM(f)}

is a minimal Groebner basis for I. Conversely, if G := {g1, . . . , gm} is an (ordered) Groeb-
ner basis for I, then the set

B := {xαgi : xα ∈M and j < i implies that LM(xαgi) is not a multiple of LM(gj)}

is a staggered linear basis for I.

Proof. (⇒). At first, we must prove that G is a nonempty finite set. Let f ∈ B and
suppose that f /∈ G, that is, there exists g ∈ B such that LM(g) divides LM(f) and f 6= g
(in particular, LM(g) ≤ LM(f)). Take LM(f) to be the smallest leading monomial of a
polynomial in B with this property. If LM(g) = LM(f), then f = g since B is a staggered
linear basis, which is absurd, thus LM(g) < LM(f). By minimality, g ∈ G so this set is
nonempty. On the other hand, G is finite since for any f, g ∈ G, f 6= g

〈LM(f)〉 (〈LM(f),LM(g)〉

and R is a Noetherian ring.
Now, we prove that G is a Groebner basis for I. Let f ∈ I, since B is a linear basis,

f can be written as

f =
m∑
i=1

cifi,

where ci ∈ F and fi ∈ B (assume that i 6= j implies fi 6= fj). Let j be such that
LM(fj) > LM(fi) for all i 6= j, this j exists since B is staggered, then LM(f) = LM(fj).
If fj /∈ G, there must exist h ∈ B such that h 6= fj and LM(h) divides LM(fj), then
LM(h) < LM(fj). By iterating this argument, we find eventually (< is a well-ordering)
g ∈ B such that g ∈ G and LM(g) divides LM(fj) = LM(f), hence, G is a Groebner basis
for I. Finally, it can be easily seen that G is minimal.

(⇐). We begin by proving that B is staggered. If LM(xαgi) = LM(xβgj), both i < j
and j < i yield a contradiction: LM(gi) divides LM(xβgj) or LM(gj) divides LM(xαgi),
hence i = j.

35

CHAPTER 2. COMPUTATION OF GROEBNER BASES

We now prove that B generates I. Suppose that f ∈ I is such that f is not a linear
combination of polynomials in B, and assume f is one of the smallest polynomial with
this property. Since G is a Groebner basis, there exists gi ∈ G such that LM(gi) divides
LM(f), say xγ LM(gi) = LM(f); assume that i is the minimal index with this property,
we claim that xγ LM(gi) lies in B. Indeed, if this were not the case, there would exist
j < i and xβ ∈ M such that xβ LM(gj) = LM(xγgi) and then LM(gj) would divide
LM(f), which contradicts the minimality of i. Since

LM (f − LT(f)) = LM (f − LC(f)xγ LM(gi)) < LM(f),

by minimality we have that f − LC(f)xγ LM(gi) is a linear combination of elements in
B, which implies that f is too, a contradiction.

Suppose that given a finite set of generators {f1, . . . , fm} of an ideal I we can get
a staggered linear basis. Then, if this basis is written in terms of some parameters, we
could use the previous proposition to get a Groebner basis of I. We refer the reader to
[GM86] to more details on this approach.

Getting a staggered linear basis of an ideal I of R is not an easy task in general, as
to begin with, I is an infinite dimensional F−vector space. Moreover, even if we have a
(infinite!) staggered linear basis of I, there is not a systematic way to obtain the finite
set G from proposition 2.2.1. To bypass this issue, we replace I by the finite dimensional
vector space I≤d. Finding a staggered linear basis for this vector space is an easy task,
that can be accomplished by using the so-called Macaulay matrix in the homogeneous
case and other similar techniques in the affine (not necessarily homogeneous) case.

Finding staggered linear bases for the vector spaces I≤d is important since these yield
to truncated Groebner bases of I, which are defined as follows.

Definition. Let I be a homogeneous ideal and G = {g1, . . . , gm} ⊆ I a subset of homo-
geneous polynomials. G is said to be a d−Groebner basis of I if

LM(I) ∩R≤d ⊆ 〈LM(g1), . . . ,LM(gm)〉.

Note that every Groebner basis is a d−Groebner basis for all d, and that aD−Groebner
basis is a d−Groebner basis for all d ≥ D. Proposition 2.2.1 can be adapted as follows.

Proposition 2.2.2. Let d ≥ 0 and let B be a staggered linear basis for the F−subspace I≤d,
with I an ideal of R. Then, the set

G := {f ∈ B : for all f 6= g ∈ B,LM(g) does not divide LM(f)}

is a minimal d−Groebner basis for I. Conversely, if G := {g1, . . . , gm} is an (ordered)
d−Groebner basis for I, then the set

B := {xαgi : xα ∈M and j < i implies that
LM(xαgi) is not a multiple of LM(gj), deg(xαgi) = d}

is a staggered linear basis for I≤d.

36

2.2. Lazard’s Algorithm

Due to this proposition we can always obtain, in a very efficient way, a d−Groebner
basis from a staggered linear basis of I≤d, which we already know how to find.

To finish the exposition, we show why finding a d−Groebner basis for I is useful for
obtaining a Groebner basis of I. This is basically due to the fact that for large enough
d, a d−Groebner basis is actually a Groebner basis, as the following proposition shows.

Proposition 2.2.3. Let I be an ideal of R. There exists an integer d0 such that for all
d ≥ d0, every d−Groebner basis of I is a Groebner basis of I

Proof. Since R is Noetherian, there exists an integer d0 such that the increasing se-
quence of ideals

〈LM(I) ∩R0〉 ⊆ 〈LM(I) ∩R≤1〉 ⊆ · · · ⊆ 〈LM(I) ∩R≤d〉 ⊆ · · ·

stabilizes, hence

〈LM(I)〉 = 〈LM(I) ∩ (∪∞`=0R`)〉 = 〈LM(I) ∩ (∪d0`=0R`)〉 = 〈LM(I) ∩R≤d0〉.

Let d ≥ d0 and G = {g1, . . . , gm} a d−Groebner basis of I, we have

〈LM(I)〉 = 〈LM(I) ∩R≤d0〉 ⊆ 〈LM(I) ∩R≤d〉 ⊆ 〈LM(g1), . . . ,LM(gm)〉

and hence, G is a Groebner basis of I.

2.2.2 Homogeneous Lazard’s Algorithm

We already saw how to obtain a d−Groebner basis of I assuming we had a linear basis
of I≤d. Now we show how to find the latter. When all polynomials/ideals involved are
homogeneous things are a lot easier to describe, so we will assume that this is the case
here. In section 3.4 we discuss why is this assumption reasonable.

Definition. Given a finite subset F = {f1, . . . , fm} ⊆ R \ {0} of homogeneous polyno-
mials and an integer d ≥ 0, the Maucalay matrix in degree d associated to F , denoted by
Md(F), is the matrix whose columns represent all the monomials of degree d and the
rows represent each polynomial of the form xαfi with |α| + deg(fi) = d, with the entry
(f, xα) being equal to Coef(f, α), the coefficient of xα in f . Conversely, given a matrix
M = [Mi,α]i∈J,α∈J whose columns are indexed by monomials, we define the polynomial
representation of M as

P(M) :=

{∑
α∈J

(Mi,α)xα : i ∈ J

}
\ {0} ⊆ R.

In this way, to obtain a staggered linear basis for I` where I = 〈f1, . . . , fm〉 and
each fi is a nonzero homogeneous polynomial, we perform Gaussian elimination on the
matrix M`(F) with F = {f1, . . . , fm} to obtain the matrix M . It can be easily checked
that B = P(M) is a staggered linear basis of I` (the rows already generated this vector
space, the reduced form ensures that this linear generating set becomes staggered). A

37

CHAPTER 2. COMPUTATION OF GROEBNER BASES

staggered linear basis of I≤d will be simply the union of the previous staggered linear
bases for ` = 0, . . . , d, which follows from the observation that

I≤d =
⊕

0≤`≤d

I`

since I is a homogeneous ideal.
Using all the discussion above along with proposition 2.2.1, a very natural algorithm

for computing d−Groebner bases comes to mind. This procedure is written formally as
algorithm 5.

Algorithm 5: Homogeneous Lazard’s algorithm
Input: F = (f1, . . . , fm) ∈ (R \ {0})m, a nonnegative integer d.
Output: G a d−Groebner basis of I = 〈f1, . . . , fm〉.

1: G := ∅.
2: for ` = 0, . . . , d do
3: M` := M`(F).
4: F` := P (RowEchelonForm(M`))
5: G := G ∪ {f ∈ F` : for all g in G,LM(g) does not divide properly LM(f)}.
6: return G.

A brief words on the Macaulay matrix

The Macaulay matrix was introduced by Francis Macaulay in [Mac94] as a generaliza-
tion of the Silvester matrix used in the computation of the resultant of two univariate
polynomials. He used these matrices to define the resultant of n “generic” homogeneous
polynomials F1, . . . , Fn of degree di respectively in n variables. Just like the classical re-
sultant, generic means that each polynomial has the form

F =
∑

i1+···+in=d

Ui1...inx
i1
1 · · ·xinn ∈ F

[
{Ui1...in}i1+···+in=d

]
[x1, . . . , xn],

where each Ui is an indeterminate. Then, he constructs the Macaulay matrix of these
polynomials in degree d =

∑
(di − 1) + 1 and define the resultant to be the greatest

common factor of the determinants of this matrix (when the resultant of certain specific
polynomials is needed, it is just a matter of evaluating the indeterminates Ui at the
coefficients of the polynomials).

The importance of the resultant is due to the following proposition.

Proposition 2.2.4. [Mac02] The resultant is a homogeneous, irreducible polynomial with
degree d1 · · · di−1 · di+1 · · · dn in the coefficients of the Fi. Also, a particular system (F1 =
0, . . . , Fn = 0) has a nontrivial solution if and only if the (specialized) resultant equals
zero.

38

2.2. Lazard’s Algorithm

2.2.3 Affine (or General) Lazard’s Algorithm

There are many reasons why, at least theoretically, we may only focus our attention
to homogeneous polynomials/ideals (see section 3.4). Anyway, for completeness, we
analyze the general form of Lazard’s algorithm which includes the case in which the
ideal may not be homogeneous.

The main drawback when considering nonhomogeneous ideals is that a linear basis
of I≤d is not easy to find. In one hand, since the ideal does not satisfy

I≤d =
⊕

0≤`≤d

I`,

we can not rely on the I`’s to obtain a linear basis of I≤d. In this case, we must find
a linear basis of I≤d directly, without using the smaller pieces I`. On the other hand,
adapting Lazard’s algorithm so that it yields a linear basis of I≤d is not a simple nor
efficient task.

The first modification we need to consider is that the columns of the Macaulay matri-
ces must index all monomials of degree at most d, since a nonhomogeneous polynomial
f has monomials of degree strictly smaller than deg(f). Like in homogeneous Lazard’s
algorithm, we iteratively construct and reduce Macaulay matrices with the rows rep-
resenting polynomials of the form xαfi with |α| + deg(fi) = ` for ` = 0, . . . , d, storing
the polynomials obtained on each step. At this point, one may conjecture that the poly-
nomials collected generate I≤d as a vector space. This is false however since in our
case there can be elements

∑
fix

αi in I≤d for which some summands fixαi have degree
strictly greater than d, so these will be obtained as linear combinations of the poly-
nomials collected in a strictly larger degree. Fortunately, what is certainly true is that
there exists d′ ≥ d such that the polynomials collected in step d′ generate a vector space
I≤d′ ⊇ V ⊇ I≤d. This immediately implies that this set is a d−Groebner basis

We now conclude that if we want a d−Groebner basis of 〈f1, . . . , fm〉, we can run
this algorithm up to certain step d′ ≥ d. Fortunately, experimental evidence shows that
usually d′ − d is not so big, so we do not need to extend so much the computation with
respect to the homogeneous case.

Many variants of this idea can be used. For example, one may not use d as a step
indicator, we can form instead the matrix with polynomials of the form xjfi and the fi’s
themselves, reduce it, and then augment this matrix with polynomials of the form xjf
and f , where the f ’s are the actual rows of the matrix. We then iterate this procedure
and, after certain number of steps (when the rows span I≤d), we end up with a staggered
linear basis of I≤d. This is the idea behind the XL algorithm [YC05], depicted in figure
2.1. Mutant MXL is another of these variants [Cab11].

39

CHAPTER 2. COMPUTATION OF GROEBNER BASES

f1

f2
...

fm

x1f1

xnf1
x1f2

...

...
xnf2

...
xnfm

xixjf1

...

...

...

xixjf2

...

xixjfm
...

xixjf3

...

Monomials of degree 2

Monomials of degree 3

Monomials of degree 4

Figure 2.1: Matrix involved in affine Lazard’s algorithm for f1, . . . , fm quadratic
polynomials

40

2.2. Lazard’s Algorithm

2.2.4 Termination Criteria

We already know how to construct d−Groebner bases, and we know that these are
Groebner bases for certain enough big d, but how do we know what d is this?

The first observation is the following. Although minimal Groebner bases are not
unique, we saw in section 1.4 that their leading monomials are uniquely determined
by the ideal so in particular the maximum degree among the leading monomials is
the same on every minimal Groebner basis. If the monomial order refines the degree,
then this is equivalent to saying that the maximum degree that appears in a minimal
Groebner basis is a property inherent to the ideal. The second observation is that run-
ning homogeneous Lazard’s algorithm up to step D always returns a set of polynomials
whose biggest degree is exactly D. Now, since homogeneous Lazard’s algorithm always
ensures that the returned sets are minimal with respect to divisibility between leading
monomials, we can be sure that whenever we end up with a Groebner basis, this will be
minimal. The conclusion of this discussion is that if MaxDeg(I) is the maximum degree
of the leading monomials in a reduced Groebner basis, running homogeneous Lazard’s
algorithm up to this degree will yield a minimal Groebner basis and moreover, this is
the smallest step we can consider in order to obtain such.

Now, it may be tempting to eliminate the parameter d from homogeneous Lazard’s
algorithm and simply run it up to step MaxDeg(I). This would yield a very optimized
version of the algorithm, where no more computation than needed is performed. Un-
fortunately, this is not possible since there is no efficient way of obtaining this number
without actually computing the Groebner basis of I, so we have to look at another ways
of deciding when to stop the algorithm.

In order to accomplish this, let’s restrict ourselves to homogeneous zero-dimensional
ideals for a moment. In this case, as we will show later, there exists certain D such that
Id = Rd holds for all d ≥ D and therefore every D−Groebner basis {g1, . . . , gm} is a
Groebner basis (this can be easily seen since Id = Rd implies that every monomial of
degree d is in I, so I` = R` for all ` ≥ d and hence

LM(I) ⊆ 〈LM(I) ∩R≤d〉 ⊆ 〈LM(g1), . . . ,LM(gm)〉).

Moreover, intuitively, getting a Groebner basis before this condition is met is an
unusual situation inasmuch as Id (Rd implies the existence of monomials in LM(I) of
degree strictly greater than d that may not be divisible by any monomial in LM(I) of
degree at most d, hence, the smallest d at which this condition is achieved is a plausible
termination condition.

Definition. Given a zero-dimensional homogeneous ideal I, we define the degree of
regularity of I as

dreg(I) := min{d ≥ 0 : Id = Rd}.

In general, it is not true that dreg(I) equals MaxDeg(I) (not even for regular se-
quences, see section 3.3), but these numbers are very similar. Even though we can not
prove this assertion, we present experimental evidence of this fact in section 6.4.1 on
the appendix, but this follows the intuitive idea presented before.

41

CHAPTER 2. COMPUTATION OF GROEBNER BASES

One may wonder why are we restricted solely to zero-dimensional ideals. In one
hand, this condition is necessary since there exists a d such that Id = Rd if and only if
the ideal is zero-dimensional. We will give a proof for this fact later, but an example
can illustrate this in the mean time: if n > 1, then I = 〈x1〉 is not zero-dimensional and
does not satisfy Id = Rd for any d, since xd2 ∈ Rd \ Id for all d. On the other hand, for
many cryptographic applications these are the only ideals of interest, so it makes sense
to work in the zero-dimensional context.

The homogeneous condition could be thrown. However, many complexity results
we will see later in this work would not remain valid. To be able to work in the affine
context too, we will give later a different definition for affine systems. In the next
section, we revisit the concept of degree of regularity in a more algebraic fashion.

2.3 Remarks about Computational Improvements

The algorithms presented in this chapter are very simple, clear and illustrate the basic
ideas behind Groebner bases computation. However, these are not used in practice, at
least not in the way we have presented them.

Regarding Buchberger’s algorithm (which illustrates the basic idea of the computa-
tion of Groebner bases using Buchberger’s criterion), there are a lot of improvements
that can be done in order to gain efficiency. For instance, there are many pairs f, g for
which we can predict that the remainder of S(f, g) will be zero without actually doing
the computation. See [CLO07, Ch. 2, §9] for more details about such improvements.

Turning our attention to Lazard’s algorithm, one can observe that the matrices built
have a huge rank defect, so a lot of rows will reduce to zero when we apply Gaussian
elimination. The Lazard’s based algorithm F4 developed by Faugère [Fau99] is used in
practice and takes this into account by making some predictions about the rows that
will reduce to zero, while combining the ideas of the S− polynomials in Buchberger’s
algorithm. Moreover, F5 algorithm [Fau02] takes exactly the independent rows in the
general case (regular sequences).

Besides these improvements, there are some computation strategies that are kept in
mind.

Choice of the monomial order. Recall that all this theory depends on a monomial
order chosen. The timings for Groebner bases algorithms have this dependence too,
and the needed monomial order may not be the fastest for the computation to end. For
instance, experimental evidence shows that the grevlex order is the most efficient for
Groebner bases computation, however, many application does not involve this order,
as for example finding the solutions of a zero-dimensional system is easy using a lex
Groebner basis (algorithm 3), which is not easy to find in general. Moreover, the maxi-
mal degree of the polynomials in the Groebner basis computation with grevlex order is
the smallest among all other possible orders [Bar04, §3.4]. In all these cases, the best
approach is to find at first a grevlex Groebner basis and then use a change of order algo-
rithm like FGML [FGLM93] in the zero-dimensional case and Groebner walk CKM97 in
the general case [CKM97]. This is a very efficient process since a lex Groebner basis for

42

2.3. Remarks about Computational Improvements

a zero-dimensional system with D solutions (counting multiplicities) can be computed
from any Groebner basis (in particular, a grevlex Groebner basis) in O(nD3) arithmetic
operations using FGML.

Choice of the critical pairs. In Buchberger’s algorithm, there is not a particular order
in which the S−polynomials are picked. Different choices of these may have a huge
impact on the computation time. Although there is not a proof-based good strategy,
experimental evidence shows that some strategies are better than others. In practice,
the normal strategy is used in algorithm F4, which consists of considering at first pairs
with smallest degree.

Homogenization. This will be discussed in more detail in section 3.4. As we will see
there, many advantages arise when we consider only homogeneous polynomials, as for
example, description of the arithmetic complexity becomes possible. Moreover, in 2.2.2
and 2.2.3 we saw that these advantages are not purely theoretical. Nonetheless, many
affine polynomial systems arise in practice so we must deal with these at the end. One
way to do this is by ‘homogenizing’ the polynomials involved, that is, obtaining some
homogeneous polynomials that preserve certain desired property that depends on the
application.

For instance, in polynomial system solving, we may add what is known as a homog-
enization variable h and consider the polynomial

f̃(x1, . . . , xn, h) = hdeg(f)f
(x1

h
, . . . ,

xn
h

)
,

which is simply f with h` added in each monomial of strictly lower degree than deg(f)
so that the degree of this monomial equals deg(f), f can be recovered then by evaluating
h = 1 (which is known as specialization). Two main drawbacks appear. In one hand,
if one wishes to calculate a Groebner basis for I = 〈f1, . . . , fm〉 using the ideal Ĩ =〈
f̃1, . . . , f̃m

〉
, we need to make sure that specializing a Groebner basis of Ĩ at h =

1 yields a Groebner basis of I; this holds for example if we use grevlex order with
x1 ≺grevlex · · · ≺grevlex xn ≺grevlex h, and in general any elimination order will do the trick
(see section 1.5.3).

On the other hand, if we want to find the solutions to (f1 = 0, . . . , fm = 0), we
could solve the homogeneous system (f̃1 = 0, . . . , f̃1 = 0) and then set

(
a1
b
, . . . , an

b

)
∈

Fn for each solution (a1, . . . , an, b) ∈ Fn+1 with b 6= 0 of this system, these will be
the solutions to the original; the disadvantage with this method is the appearance of
‘parasite’ solutions, that is, those with h = 0. Another technique that avoid this issue is
using a weighted order, but this does not work for all systems.

Finally, as a homogeneous polynomial induced from an affine polynomial we can
also consider its highest homogeneous degree part. This can be seen as adding the
variable h as before, and specialize it at h = 0. In this case, the solutions to a polynomial
system are not related with this induced system, but Groebner bases do. In particular,
as we will see in the next chapter, arithmetic complexity of Groebner bases computation
is related, and therefore this induced system will be useful to analyze the computation
process in the affine case.

43

Chapter 3

Complexity estimates

A complexity analysis of the algorithms presented before is included in this
chapter. This will allow us to give a numerical conclusion about the efficiency
of computing Groebner bases.

The contents of this chapter can be widely described in three parts. In section 3.2
we analyze an intrinsic property of polynomial systems that determines the arithmetic
complexity for the computation of a Groebner basis using Lazard’s algorithm. This
property will be the so-called degree of regularity, and we will see that the mentioned
complexity is exponential in this quantity. Then, in section 3.3, we study the behavior
of this property in the “general” case (this will be made clear in that section) to have
a reference point on how hard it is to compute a Groebner basis for most systems. At
the end, we discuss how to measure the complexity for particular systems, where the
degree of regularity is not easy to calculate. For these, the approach will be through
the falling degree, which we explain in detail. All this work requires some concepts and
techniques from Algebraic Geometry, which we introduce in the next section.

3.1 Some words on Algebraic Geometry and Commuta-
tive Algebra

(Classical) Algebraic Geometry is concerned with the study of zeros of polynomial sys-
tems with coefficients over a field. MPKC is naturally connected to algebraic geometry
since it involves polynomial systems, and, as mentioned in the introduction, the hard-
ness of finding zeros is critical for the security of MPKC cryptosystems.

We use the same notation as before: R denotes the polynomial ring F[x1, . . . , xn].
Additionally, we let F and R denote the algebraic closure of F and the polynomial ring
F[x1, . . . , xn] respectively.

3.1.1 Zariski topology

Definition. Let B be a subset of R and K an extension field of F. We define the algebraic
set associated to B in K as

VK(B) := {a ∈ Kn : f(a) = 0 for all f ∈ B}.

CHAPTER 3. COMPLEXITY ESTIMATES

One easily checks that VK(B) = VK(〈B〉). In particular, by Hilbert Basis theorem,
for each ideal I it holds that VK(I) = VK(f1, . . . , fm) for some f1, . . . , fm ∈ I.

Computing VK(I) where K is an intermediate field between F and F is not an easy
task in general. For instance, finding the real solutions of a system with rational coef-
ficients is not easy in general. However, when F is a finite field of q elements and we
wish our solutions to lie in F, we only need to add the so-called field equations to the
system: xq1 = x1, . . . , x

q
n = xn. This holds since VK(xq1 − x1, . . . , x

q
n − xn) = Fn for any

field extension K of F, so

VK(f1, . . . , fm, x
q
1 − x1, . . . , x

q
n − xn) = Fn ∩VK(f1, . . . , fm) = VF(f1, . . . , fm).

We state this property (without proof) and some interesting facts about this ideal in the
next proposition.

Proposition 3.1.1. Let F be a finite field of size q and let I = 〈f1, . . . , fm〉 be an ideal of
F[x1, . . . , xn]. Let J = I + 〈xq1 − x1, . . . , x

q
n − xn〉, then

VF(I) = VF(I, xq1 − x1, . . . , x
q
n − xn).

Moreover, the following holds:

1. The ideal J is radical;

2. G = {1} if and only if the system (f1 = 0, . . . , fm = 0) has no solutions in F;

3. G = {x1 − a1, . . . , xn − an} if and only if the system (f1 = 0, . . . , fm = 0) has a
unique solution (a1, . . . , an) in F.

We will be mainly interested in the algebraic sets in F, so from now on during this
section (unless otherwise is stated) we only consider these. The following is an easy-to-
prove proposition.

Proposition 3.1.2. Let I, J be ideals of R. Then the following holds

1. VF({0}) = F;

2. VF(R) = ∅;

3. VF(IJ) = VF(I) ∪VF(J);

4. If {Iα}α is a family of ideals of R, then VF (
⋃
α Iα) =

⋂
αVF(Iα).

Due to this proposition, we can define a topology in Fn where the closed sets are the
algebraic sets, that is, a set X ⊂ Fn is closed in this topology if and only if X = VF(B)
for some B ⊆ R. This toplogy is known as the Zariski topology over Fn.

Zariski topology has very interesting properties, in particular, we have the following.

Proposition 3.1.3. Every nonempty open subset of Fn is dense.

This will allow us to define the concept of a generic property later on.

46

3.1. Some words on Algebraic Geometry and Commutative Algebra

Definition. Let K be an extension field of F and C ⊆ Kn, we define the ideal associated
to C in K[x1, . . . , xn] as

IK(C) := {f ∈ K[x1, . . . , xn] : f(c) = 0 for all c ∈ C}.

The operators IF and VF seem to be inverse of each other. However, if I ⊆ R is a
polynomial ideal of R, one may have polynomials f such that f r ∈ I but f /∈ I, and in
such case we would have that f ∈ IF (VF(I)), so IF (VF(I)) is not necessarily equal to I.
However, the only way for a polynomial to be in IF (VF(I)) is that some power of it is
in I. In order to state more precisely this result, we need the following definition.

Definition. Let I be an ideal of a ring A. We define the radical ideal of I as the ideal

√
I := {a ∈ A : ar ∈ I for some r ∈ N}.

Theorem 3.1.4. (Hilbert Nullstelensatz). [CLO07, p. 173] Let I be an ideal of R, then

√
I = IF (VF(I)) .

3.1.2 Systems with Finitely Many Solutions

We extend the concept of zero-dimensionality to an ideal I, saying that I is zero-
dimensional if the associated algebraic set VF(I) is finite.

Definition. Let A be a commutative ring. The Krull dimension of A, denoted by dim(A),
is the number of inclusions in the longest strictly increasing chain of prime ideals of A.

Theorem 3.1.5. Let I be a polynomial ideal of R. The following assertions are equivalent.

(i) I is zero-dimensional.

(ii) The dimension of R/I as a F−vector space, denoted by dimF(R/I), is finite.

(iii) The Krull dimension of R/I, dim(R/I), is zero.

(iv) I is contained in only finitely many prime ideals.

(v) I is contained in only finitely many maximal ideals.

(vi) I ∩ F[xi] 6= {0} for each i = 1, . . . , n.

(vii) For every Groebner basis G of I, there exists some element in LM(G) of the form x`i
for each i ∈ {1, . . . , n}.

47

CHAPTER 3. COMPLEXITY ESTIMATES

3.1.3 Hilbert’s Function and Hilbert’s Series

Recall from section 2.2 that R is a graded F−algebra

R =
⊕
d≥0

Rd

with Rd the F−vector space generated by all the monomials of degree d. Given a homo-
geneous ideal I, the quotient R/I can be regarded as a graded ring with gradation

R/I =
⊕
d≥0

(Rd + I)/I.

Since we have a natural isomorphism Rd/Id ∼= (Rd + I)/I sending f + Id to (f + 0) + I,
we can regard R/I as

R/I =
⊕
d≥0

Rd/Id.

Definition. Let A = ⊕dAd be a graded finite dimensional F−algebra. The Hilbert’s
function of A is defined as HFA(d) = dimF(Ad). The Hilbert series of A is defined as the
formal power series

HSA(t) =
∑
d≥0

HFA(d)td.

In particular, if I is a homogeneous ideal of R, we have

HFR/I(d) = dimF ((R/I)d) = dimF(Rd/Id) = dimF(Rd)− dimF(Id)

and
HSR/I(t) =

∑
d≥0

HFR/I(d)td.

Theorem 3.1.6. [MS04, Thm 8.20] Given a homogeneous ideal I ⊆ R, there exists a
polynomial N(t) ∈ Z[t] such that

HSR/I(t) =
N(t)

(1− t)n
.

From this theorem, we can easily prove the following

Theorem 3.1.7. Let I be a homogeneous ideal of R. There exists D > 0 and a polynomial
p ∈ Z[x] whose degree is dim(R/I)− 1 such that HFR/I(d) = p(d) for every d ≥ D.

Proof. We know from theorem 3.1.6 that

HSR/I(t) =
N(t)

(1− t)δ

where δ ≤ n and N(1) 6= 0, if we apply partial fraction expansion we obtain a polyno-
mial Q(t) ∈ Z[t] and scalars a1, . . . , aδ ∈ Z with aδ 6= 0 such that

HSR/I(t) = Q(t) +
δ∑
i=1

ai
(1− t)i

.

48

3.2. Degree of Regularity and Complexity of Lazard’s Algorithm

Notice that, for each d ∈ Z+, the coefficient of td in ai
(1−t)i is

Coef

(
ai

(1− t)i
, d

)
= ai

(
i+ d− 1

i− 1

)
which is a polynomial in d of degree i− 1. Then, for all d > deg(Q) we have that

HFR/I(d) := Coef
(
HSR/I(t), d

)
=

δ∑
i=1

ai

(
i+ d− 1

i− 1

)
,

which is a polynomial in d.

Notice that if two polynomials satisfy the previous theorem then they are necessarily
equal. Moreover, it is proved in [CLO07, Ch. 9, §3, Thm. 11] that the degree of the
polynomial p equals the projective dimension of I, which is dim(I) − 1. Besides, from
the proof of the previous theorem we see that the degree of p equals the degree of∑δ

i=1 ai
(
i+d−1
i−1

)
, which is δ − 1. This implies that

Corollary 3.1.8. If N(1) 6= 0 and HSR/I(t) = N(t)
(1−t)δ , then dim(R/I) = δ. In particular, if

dim(R/I) = 0, then HSR/I(t) is a polynomial and HSR/I(1) = dimF(R/I).

As a final note, from the proof of theorem 3.1.7 we notice that HFR/I(d) is equal to
the polynomial p if and only if d > deg(Q). This observation will be important in the
next section.

3.2 Degree of Regularity and Complexity of Lazard’s Al-
gorithm

As mentioned at the beginning of this chapter, a good indicator for the complexity of
computing a Groebner basis for an ideal, is its degree of regularity. This will be defined
in this section as an algebraic property of polynomials sequences, and we will see later
in the next section its relation with the termination of Lazard’s algorithm.

Definition. Let I be a homogeneous ideal of R. The smallest D satisfying theorem
3.1.7 is called the index of regularity of I, and we denote it by ireg(I). The corresponding
polynomial p, denoted by HPR/I(d), is called the Hilbert polynomial of I.

Suppose that I is a homogeneous zero-dimensional ideal, hence dim(R/I) = 0 due
to proposition 3.1.5 and therefore, from corollary 3.1.8, HSR/I(t) is a polynomial. This
implies that the Hilbert polynomial of I is the constant polynomial 0 and so the index
of regularity of I is deg

(
HSR/I(t)

)
+ 1. Furthermore, since HFR/I(d) = HP(d) = 0 for

all d ≥ ireg(I), by definition of the Hilbert function we see that Id = Rd if and only if
d ≥ ireg(I). By the definition of degree of regularity given in section 2.2.4, we see that
ireg(I) = dreg(I). We will use this relation to extend the concept of degree of regularity
to affine zero-dimensional ideals.

Given a polynomial f ∈ R, we denote by f (h) the homogeneous component of high-
est degree in f .

49

CHAPTER 3. COMPLEXITY ESTIMATES

Proposition 3.2.1. Let F = (f1, . . . , fm) ∈ Rm where each fi is a polynomial, not nec-
essarily homogeneous, and let F (h) =

(
f

(h)
1 , . . . , f

(h)
m

)
. If

〈
F (h)

〉
is zero-dimensional, then

〈F 〉 is also zero-dimensional.

Definition. In the context of the previous proposition, we define the degree of regularity
of F as

dreg(F) := ireg

(〈
F (h)

〉)
.

Remark. It is worth noticing that the degree of regularity defined in this fashion is not
an invariant of the ideal 〈F 〉 when the polynomials are not homogeneous. For instance,
〈x〉 = 〈x2 + x, x2〉 but dreg(x) = 1 and dreg(x2 + x, x2) = ireg(x2) = 2.

The relation between the degree of regularity and the arithmetic complexity of
Lazard’s algorithm when the input is homogeneous has already been made clear. How-
ever, in the affine context this relation will only be made evident in section 3.4.2.

For a zero-dimensional homogeneous ideal I, since algorithm 5 obtains a Groebner
basis for I when d = dreg(I) we can bound the arithmetic complexity of this algorithm
in terms of this value.

Theorem 3.2.2. [Spa12, Thm. 1.72] Let F = (f1, . . . , fm) ∈ Rm be a family of homo-
geneous polynomials generating a zero-dimensional ideal. The arithmetic complexity of
computing a Groebner basis of this ideal is bounded by

O

dreg(F)∑
i=0

(n+ i− 1

i

) m∑
j=1

(
n+ i− deg(fj)− 1

i− deg(fj)

)((n+ i− 1

i

)
−HFR/〈F 〉(i)

)ω−2

≤ O
(
m

(
n+ dreg(F)

dreg(F)

)ω)
,

where ω is the exponent for the complexity of matrix multiplication.

In the sequel we write dreg(f1, . . . , fm) in terms of the degrees of the fi’s, at least in
the general case (i.e., random polynomials) so that we obtain a more concrete bound
on the arithmetic complexity of Lazard’s algorithm.

3.3 Regular and Semi-Regular Sequences

We saw that when I is a homogeneous zero-dimensional ideal of R, the complexity for
finding a Groebner basis for I using Lazard’s algorithm is bounded in terms of dreg(I),
which equals ireg(I). However, computing ireg(I) in general can be as hard as computing
a Groebner basis of I itself. Fortunately, there are some families of polynomials whose
index of regularity is well known, these are the regular and semi-regular sequences.

Definition. A sequence of non-zero homogeneous polynomials F = (f1, . . . , fm) is
called regular if for all i ∈ {1, . . . ,m−1}, fi+1 does not divide 0 in the ring R/〈f1, . . . , fi〉.

Although it is not clear from the definition, there are no regular sequences when
m > n. This is due to the following characterization.

50

3.3. Regular and Semi-Regular Sequences

Proposition 3.3.1. Let F = (f1, . . . , fm) be a sequence of non-zero homogeneous polyno-
mials. Then the sequence is regular if and only if the Hilbert series of I = 〈f1, . . . , fm〉
is

HSR/I(t) =

m∏
i=1

(
1− tdeg(fi)

)
(1− t)n

.

Hence, from corollary 3.1.8, we see that every regular sequence of length m has
dimension n−m, in particular, there are no regular sequences of length greater than n.
It is worth mentioning that proposition 3.3.1 actually characterizes regular sequences:

Proposition 3.3.2. Let F = (f1, . . . , fm) be a sequence of non-zero homogeneous polyno-
mials. Then the sequence is regular if and only if the Krull dimension of I = 〈f1, . . . , fm〉 is
n−m.

The main property we are going to use is that when I is zero-dimensional, the Hilbert
series becomes a polynomial and its degree plus 1 will be the index of regularity. We
already mentioned this, but the difference now is that for a zero-dimensional regular
sequence f1, . . . , fn we have an explicit formula for the Hilbert series:

n∏
i=1

(
1− tdeg(fi)

)
(1− t)n

so after taking the n common factors (1 − t) in the numerator, we end up with a poly-
nomial of degree

∑n
j=1(deg(fj)− 1), so we obtain the following result.

Theorem 3.3.3. Given a regular sequence f1, . . . , fn, the (degree) index of regularity of
the ideal I generated by them is

dreg(I) = ireg(I) = 1 +
n∑
j=1

(deg(fj)− 1),

which is known as the Macaulay bound.

Corollary 3.3.4. For a regular quadratic system of equations (p1 = 0, . . . , pn = 0), the
complexity of solving the polynomial system is exponential in n.

Proof. In this case, the previous theorem shows that the degree of regularity is linear
in n, so theorem 3.2.2 implies that the arithmetic complexity of computing a Groebner
basis of this ideal is exponential in n.

We already know the degree of regularity for regular sequences, but not every se-
quence is regular (for instance, F = (x1, x

2
1) is not regular). However, almost every

sequence of m ≤ n polynomials is regular. This will be made more precise in the follow-
ing.

51

CHAPTER 3. COMPLEXITY ESTIMATES

3.3.1 Generic Properties

Let V be a finite dimensional vector space over F, then we can identify V with FD,
where D = dimF(V). Given a property that objects in V may or may not have, we say
that this property is a generic property if it holds (under the previous identification)
in a nonempty open set of FD, using the Zariski topology defined in 3.1.1. Since any
nonempty Zariski-open subset is dense, a generic property holds in a dense set and
therefore, intuitively, it should hold for almost every point in V .

Fix m ≤ n and non-negative integers d1, . . . , dm. Consider V as the F−vector space
of all sequences F = (f1, . . . , fm) with fi ∈ R being a homogeneous polynomial of
degree di. We identify each sequence as a tuple whose entries are the coefficients of the
polynomials in the sequence. We aim to prove that being regular is a generic property
in this vector space, and this will be actually a corollary of the following theorem.

Theorem 3.3.5. Let V the F−vector space defined above and let D be its dimension. Then,
there exists a nonempty Zariski-open subset of FD such that the Hilbert function of 〈F 〉 is
constant among all the sequences F in such set (under the identification).

The proof can be found in [Par10]. As a corollary, using proposition 3.3.1, we
see that the set of regular sequences is an open set, thus we only need to check it is
nonempty. To accomplish this, it is easy to see that the following is a regular sequence

F = (xd11 , . . . , x
dm
m).

3.3.2 Semi-Regular Sequences

Using Macaulay bound and theorem 3.2.2, we can bound the arithmetic complex-
ity of Lazard’s algorithm for computing a Groebner basis of a zero-dimensional ideal
〈f1, . . . , fm〉, with m ≤ n. However, the case n > m still needs to be addressed. This
case is important since, in many applications, an overdetermined system (more equa-
tions than variables) is needed to be solved; for instance, we can consider F to be a finite
field of size q and work in its algebraic closure F all the time, then if we want to solve a
system (f1 = 0, . . . , fm = 0) where each polynomial lies in R we make computations (or
apply any theorem involving algebraic closeness) in R and then add the so-called field
equations xq1 = x1, . . . , x

q
n = xn (which makes the system overdetermined) to force the

solutions to lie in Fn, and not in Fn.
Semi-regular sequences are a natural extension of regular sequences that allow us

to preserve many properties of such in the m > n case. These are introduced in chapter
3 of [Bar04], and we refer the reader to that work for further details. However, in
order to give a general idea, we state the definition of semi-regular sequences for the
zero-dimensional case below.

Definition. A sequence of non-zero homogeneous polynomials F = (f1, . . . , fm) is
called semi-regular if 〈f1, . . . , fm〉 6= R and for all i ∈ {1, . . . ,m}, if gifi = 0 in the
ring R/〈f1, . . . , fi〉 and deg(gifi) < ireg(I), then gi = 0 in R/〈f1, . . . , fi〉.

52

3.4. Homogeneous vs Affine Polynomial Systems

3.4 Homogeneous vs Affine Polynomial Systems

This is a good point to make clear why have we been assuming that the polynomi-
als/ideals are homogeneous. We list at first some advantages of considering homoge-
neous polynomials/ideals:

• The theory developed in section 3.1.3 (necessary for finding the degree of regu-
larity for regular sequences) is only valid for homogeneous ideals.

• When dealing with homogeneous polynomials f1, . . . , fm of degrees d1, . . . , dm, we
can be sure that any algebraic combination

∑
figi with each gi homogeneous of

degree d − di for some d will have degree exactly d or will be zero. As we saw in
section 2.2, this allowed Homogeneous Lazard’s algorithm to be clearer and more
efficient than its affine version. Also, this allowed us to give a concrete termination
criteria for the former.

Additional to these, homogeneous polynomials are frequent in many applications,
and they are used very often due to their simplicity. Now we wonder, are we losing any
generality when we consider only homogeneous polynomials/ideals? at the end of the
day we need to take affine systems into account. For example, they are involved when
we append the field equations xq1−x1 = 0, . . . , xqn−xn = 0, which are necessary in order
to force the solutions to lie in the finite field Fq and not in its closure.

In the following we show how to move from affine systems to homogeneous systems,
and how to obtain information of one from the other. The conclusion will be that if we
want to study certain affine system, we can derive a homogeneous system from it and
apply the already studied theory to it. Fortunately, this will give us information about
the original system.

3.4.1 Homogenization and Specialization

There is a standard way to get a homogeneous polynomial from an affine one and vice
versa.

Definition. Let f ∈ R \ {0}. The homogeneous polynomial

f̃(x1, . . . , xn, h) = hdeg(f)f
(x1

h
, . . . ,

xn
h

)
∈ R[h] = F[x1, . . . , xn, h]

is called the homogenization of f , and is obtained by multiplying hdeg(f)−deg(xα) to every
monomial xα in f . If f is the zero polynomial inR, we define f̃ to be the zero polynomial
in R[h]. Given an ideal I = 〈f1, . . . , fm〉 of R, we define the homogenization of I as the
ideal of R[h]

Ĩ =
〈
f̃1, . . . , f̃m

〉
.

Remark. We must note that Ĩ depends on the generators chosen, that is, if I =
〈f1, . . . , fm〉 = 〈f ′1, . . . , f ′m〉 it may be the case that〈

f̃1, . . . , f̃m

〉
6=
〈
f̃ ′1, . . . , f̃

′
m

〉
.

When this notation is used, the generators for I will be clear from the context.

53

CHAPTER 3. COMPLEXITY ESTIMATES

So, for any (possible affine) polynomial, we can get a homogeneous polynomial
of the same degree with a new variable. Notice that this is an “invertible” operation,
meaning with this that f and I can always be recovered from f̃ and Ĩ. For this matter,
the following notation comes in handy.

Definition. Let c ∈ F. Given f ∈ R[h], the polynomial

f(h=c)(x1, . . . , xn) = f(x1, . . . , xn, c) ∈ R

is called the specialization of f at h = c. Analogously, given J an ideal of R[h]
generated by p1, . . . , pm ∈ R[h], we define J(h=c) as the ideal of R generated by
(p1)(h=c) , . . . , (pm)(h=c), and it is called the specialization of J at h = c.

Remark. As in the homogenization, J(h=c) depends on the generators chosen, so these
must be clear from the context.

Using this definition, we get that for any f ∈ R it holds that f̃(h=1) = f and f̃(h=0)

is equal to the highest homogeneous part of f , observations that will be relevant in
subsequent results. We now wonder what properties do f̃ and Ĩ inherit from f and I
and, conversely, what properties do p(h=c) and J(h=c) inherit from p and J .

Varieties

Regarding the varieties, it is the case that the variety of I is closely related to the variety
of Ĩ. More precisely, if f1, . . . , fm ∈ R and we want to find the solutions to (f1 =

0, . . . , fm = 0), we can solve the homogeneous system (f̃1 = 0, . . . , f̃1 = 0) and then
for each solution (a1, . . . , an, b) ∈ Fn+1 with b 6= 0,

(
a1
b
, . . . , an

b

)
∈ Fn is a solution to the

original system.
Conversely, if p1, . . . , pm ∈ R[h] then the nonzero solutions of (p1 = 0, . . . , pm = 0)

with nonzero last coordinate will have the form (c · a1 . . . , c · an, c) for c ∈ F \ {0} and
for every solution (a1, . . . , an) to the system(

p1(h=1) = 0, . . . , pm(h=1) = 0
)
.

This shows that, at least from a theoretical point of view, we can solve the homoge-
nized system and extract the desired solutions from there.

Groebner Bases

Lemma 3.4.1. [Frö97, Lemma 29, Chap 8] Let I be a homogeneous ideal in R. Then the
reduced Groebner basis of I in any order consists of homogeneous elements.

Recall from section 1.1 that given any monomial order≺we denote by≺′ the graded
order of ≺ which is defined by: α ≺′ β if and only if |α| < |β| or |α| = |β| and α ≺ β.

Proposition 3.4.2. [Frö97, Prop. 30, Chap 8] Let I be a homogeneous ideal in R. Then
the reduced Groebner basis of I with respect to the orders ≺ and ≺′ coincide.

54

3.4. Homogeneous vs Affine Polynomial Systems

This shows that for homogeneous ideals we can consider, without loss of generality,
the graded order of a given order, which is very useful since in this case the degree of f
is the highest among all the monomials in supp(f).

One would expect that Groebner bases of Ĩ say something about Groebner bases of
I. This is indeed the case, but in order to see this we need the following definition.

Definition. Let ≺ be a monomial order in R = F[x1, . . . , xn]. We say that a monomial
order ≺1 in F[x1, . . . , xn, h] extends the order ≺ if LM(f) = LM

(
f̃
)

for any f ∈ R.

Remark. Recall that an elimination order of the variables x1, . . . , xn in R[h] is a mono-
mial order ≺1 of R[h] such that, for all monomials xα1hb1 and xα2hb2, if xα1 ≺1 x

α2 then
xα1hb1 ≺1 x

α2hb2. It can be easily seen that if ≺ is the monomial order of R defined by
restricting ≺1, then ≺1 extends ≺.

The following tells us that we can get a Groebner basis of an ideal by specializing a
Groebner basis of its homogenization.

Proposition 3.4.3. [Frö97, Prop. 34, Chap 8] Let I = 〈f1, . . . , fm〉 be an ideal of
R and ≺ be any monomial order in R. Let ≺1 be a monomial order in R[h] that
extends ≺. If G = {g1, . . . , gs} is a Groebner basis of Ĩ with respect to ≺1, then
{g1(h=c), . . . , gs(h=c)} is a Groebner basis of Ĩ(h=c) for every c ∈ F with respect to ≺. In
particular, {g1(h=1), . . . , gs(h=1)} is a Groebner basis of I with respect to ≺.

3.4.2 Arithmetical Complexity for Affine Systems

In this section we are going to assume that the monomial order in R[h] is grevlex with
h ≺grevlex xn ≺grevlex . . . ≺grevlex x1, so in particular the monomial order in R is also
grevlex with xn ≺grevlex . . . ≺grevlex x1. Notice that the former extends the latter, so we
will be able to use the previous proposition. This is reasonable since in practice we use
this order to compute Groebner bases, as mentioned in section 2.3.

In theorem 3.2.2 we gave a very explicit bound on the arithmetical complexity of
Lazard’s algorithm applied to a set of homogeneous polynomials generating a zero-
dimensional ideal. Suppose that we have now f1, . . . , fm ∈ R not necessarily homoge-
neous (but still generating a zero-dimensional ideal). We now show how to apply the
previous results to derive similar conclusions on these type of systems.

Considering the Highest Degree Homogeneous Part

A very common practice is to consider the homogeneous polynomials f
(h)
1 , . . . , f

(h)
m

where f
(h)
i = f̃i(h=0). To justify this, we have the following proposition. Recall that

MaxDeg(I) denotes the highest degree among all the monomials in the reduced Groeb-
ner basis of I.

Proposition 3.4.4. Let I be the ideal of R generated by f1, . . . , fm and J =〈
f

(h)
1 , . . . , f

(h)
m

〉
. Then

MaxDeg(I) ≤ MaxDeg(J) ≤ MaxDeg
(
Ĩ
)
.

55

CHAPTER 3. COMPLEXITY ESTIMATES

Proof. We begin by noticing that J equals Ĩ(h=0). Let G,B and H be the reduced
Groebner bases of I, J and Ĩ respectively. By proposition 3.4.3, we have that B′ ={
p(h=0) : p ∈ H

}
is a Groebner basis of J (not necessarily reduced). Nevertheless, B′

contains a minimal Groebner basis of J and from it we can obtain B by applying al-
gorithm 2. Since this operation involves only polynomial division and given that the
order considered is graded (grevlex), we conclude that MaxDeg(J) is less than or equal
to the highest degree of the polynomials in B′. On the other hand, for any polynomial
p ∈ H we have two cases: either h divides LM(p) and therefore (by the properties of
the grevlex order) h divides p so p(h=0) = 0, or h does not divide LM(p) in which case
LM (p) = LM

(
p(h=0)

)
. In any case, we see that deg

(
p(h=0)

)
≤ deg(p) for all p ∈ H so we

conclude that the highest degree of the polynomials in B′ is at most MaxDeg(J), hence
MaxDeg(J) ≤ MaxDeg

(
Ĩ
)

.
We omit the proof for the other inequality.

Recall that we defined the degree of regularity of the polynomials f1, . . . , fm (gener-
ating a zero-dimensional ideal) as the degree of regularity of the homogeneous polyno-
mials f (h)

1 , . . . , f
(h)
m , which as we saw in section 2.2.4 is usually equal to the maximum

degree of the Groebner basis of the ideal that these polynomials generate. Last proposi-
tion shows then that dreg (f1, . . . , fm) usually bounds the maximum of the degrees of the
polynomials in the Groebner basis of the ideal they generate. We saw in section 2.2.4
that in the homogeneous case, this maximum degree actually determines the complex-
ity of Lazard’s algorithm, since it must run up to this step in order to obtain a Groebner
basis. However, if we run affine Lazard’s algorithm then this maximum degree does not
tell the algorithm when to stop exactly, but as we saw in section 2.2.3 this maximum
degree and the minimum number of steps needed to obtain a Groebner basis do not
differ too much.

In conclusion, the degree of regularity of the polynomials f1, . . . , fm usually bounds
the number of steps needed to compute a Groebner basis using Lazard’s algorithm.

Considering the Homogenized System

It is not difficult to be convinced that computing Groebner bases for homogeneous ideals
is easier than doing it for affine systems, the difference between homogeneous and
affine Lazard’s algorithms illustrate this. Due to proposition 3.4.3, given polynomials
f1, . . . , fm ∈ Rwe can find a Groebner basis for the homogeneous ideal

〈
f̃1, . . . , f̃m

〉
and

then specialize it at h = 1 to obtain Groebner basis for 〈f1, . . . , fm〉. Even though this
may seem to be the best approach, one has to keep in mind that homogenizing adds
a new variable and therefore the sizes of the Macaulay matrices involved in Lazard’s
algorithm grows in size from

d′∑
`=0

(
n+ `− 1

`

)
(affine Lazard’s algorithm in n variables) to(

n+ d

d

)
56

3.5. Dimension 0 vs Positive Dimension

(homogeneous Lazard’s algorithm, d′ & d).

3.5 Dimension 0 vs Positive Dimension

Additional to the homogeneous restriction we also have imposed constantly that the
ideals must be zero-dimensional. The first reason to do this are the applications. We are
studying Groebner bases as a mean to achieve an end: solving systems of polynomial
equations. In this context, this only has sense if the system has a finite number of
solutions so that we can list them all (unless we pursue a rational parametrization of
the variety, which we do not consider here). Moreover, the fields of interest to us are
finite fields and even if there may be systems with an infinite number of solutions, we
will be only interested in the solutions lying in the finite field, and the number of such
is clearly finite.

However, Groebner bases themselves are a tool for solving many other problems
(as we could see in section 1.5), most of which do not require the ideal to be zero-
dimensional. Even though the analysis we have performed so far using the index of
regularity only applies to zero-dimensional ideals, it is surprising that this number is
related to the complexity even when the dimension is positive.

We do not prove this fact here, but we give experimental evidence in the appendix.
As can be seen there, MaxDeg(I) behaves just like in the zero-dimensional case, staying
close to the ireg(I) (however, it is sometimes greater or smaller than this index).

We showed in theorem 3.3.3 that the degree of regularity of a regular sequence
f1, . . . , fn is the Macaulay bound

1 +
n∑
j=1

(deg(fj)− 1).

We conjecture an extension of this result that seem to be true from the experiments.

Conjecture 3.5.1. Given m ≤ n and a regular sequence f1, . . . , fm, the degree (index) of
regularity is given by

1− (n−m)︸ ︷︷ ︸
dim(I)

+
m∑
j=1

(deg(fj)− 1)

whenever this value is nonnegative, and zero otherwise.

3.6 Falling Degree

We have seen how to predict the running time of Lazard’s algorithm for almost all poly-
nomial systems, but how do we measure this running time for a specific system? The
degree of regularity as was defined before may be as difficult to compute as a Groeb-
ner Basis itself, therefore we need a different property from the system which is easier
to measure and that gives an idea about the running time of Lazard’s algorithm, this
parameter is the Falling Degree. We introduce this concept by giving a motivation for

57

CHAPTER 3. COMPLEXITY ESTIMATES

it. Suppose we have f1, . . . , fm ∈ R polynomials and we want to find a Groebner Basis
for I = 〈f1, . . . , fm〉, then we would proceed as depicted in figure 2.1 by considering
the set of combinations p1f1 + · · · + pmfm where each pifi has degree d. In general we
have that dim(I`) < dim(R`), and as discussed in section 2.2.4, this process will find a
Groebner Basis once I` = R`. Suppose that at a degree ` < d we find a combination
f = p1f1 + · · ·+ pmfm where each pifi has degree d and such that f has degree `, then,
given that f ∈ I, this polynomial can be added to the Macaulay matrix at degree `. If
f was not already in this matrix, it will enlarge it and it will produce new polynomials
that can be used for the degrees above `. This effect will propagate among these degrees
and we will obtain more of these polynomials that will help enlarging the corresponding
matrices. The result of this is that dim(It) = dim(Rt) will be achieved for a t close to d
and therefore the algorithm will terminate at this step. The smallest degree d at which
this situation occurs will be called Falling Degree.

We make this idea more precise in the following, but we begin by settling some
notation used in our context.

3.6.1 Reduced Ring

In cryptography we are interested only in finite fields, so we will set for the rest of this
work F = Fq (finite field with q elements, where q is a prime number). Additionally,
we are not interested in solutions that lie outside the field F. A common practice to
force this condition is to append the field equations xq1 − x1 = 0, . . . , xqn − xn = 0 to
every polynomial system (see proposition 3.1.1). However, this can be seen equivalently
as performing computations over a finitely generated algebra R = F[x1 . . . , xn] with
the relations xiq = xi for each i. This approach is more efficient and this is actually
what is done in practice, but in order to work in this new algebra a formalization is
required. More precisely, we will state the required notions to regard the elements of
the algebra R as polynomials with algebraic variables while preserving some properties
from transcendental variables like degree, homogeneity, specialization, among others.

Definition. We define the algebra of functions as

R :=
F[x1, . . . , xn]

〈xq1 − x1, . . . , x
q
n − xn〉

,

which is the image of R under the natural projection given by f ∈ R 7→ π(f) = f +
〈xq1− x1, . . . , x

q
n− xn〉, in particular, R = F[x1, . . . , xn] where xi := π(xi). We refer to the

elements of this algebra as functions.

The name is due to the fact that every function f : F → F can be identified with a
polynomial of R, which is a consequence of the discussion below.

We now give a unique way of representing the elements of R. This basically follows
the intuitive idea that every polynomial in R can be written uniquely as a polynomial
in the variables x1, . . . , xn with each variable having degree at most q − 1, performing
reductions of powers modulo q. We need at first a very simple lemma.

Lemma 3.6.1. [CLO07, prop. 4, §9, chap. 2] Let G = {g1, . . . , gm} ⊆ R. If
gcd (LM(gi),LM(gj)) = 1 for all i 6= j, then G is a Groebner basis.

58

3.6. Falling Degree

Proposition 3.6.2. Every polynomial in R can be written uniquely as a polynomial in the
variables x1, . . . , xn with each variable having degree at most q − 1.

Proof. By the previous lemma we have that {xq1 − x1, . . . , x
q
n − xn} is a Groebner basis

(for every monomial order), so in particular by proposition 1.4.2 each element f +
〈xq1 − x1, . . . , x

q
n − xn〉 in the quotient R can be identified uniquely with its remainder.

Finally, every remainder has the property that all of its monomials are not divisible by
any LM(xqi − xi) = xqi , so in particular the degree of each variable is at most q − 1.

Let V be the subspace of R given by

V := {f ∈ R : for all xα ∈ supp(f) and i, xqi - xα} .

Due to the previous proposition for every F ∈ R there exist a unique f ∈ V such that
π(f) = F , and we denote this element by π−1(F). We define the degree of a function F
in R to be the degree of the polynomial π−1(F) in R representing it.

Now that we have defined the concept of degree for elements in R we would like
to obtain some properties of it. For instance, it is clear that the set of homogeneous
functions inR of certain degree is a subspace ofR, and it is also true that every function
in R can be decomposed uniquely as a sum of homogeneous functions. However, if we
let Rd be the set of homogeneous functions in R of degree d, then R =

⊕
d∈NRd but

not as a graded algebra since it is not true that multiplications of functions of degree
a and b have degree a + b (for example, if q = 2, f = x1 has degree 1 and f 2 = f has
also degree 1). However, R inherits the structure of filtered algebra R = ∪d≥0R≤d with
R≤d = π (R≤d).

In the rest of this thesis (unless otherwise stated), we will always work in the ring
R = F[x1, . . . , xn], and we will omit the bars in the variables and simply denote them by
xi, always assuming the relation xqi − xi. The discussion from this section tells us that
this does not affect basic concepts like degree, homogeneity, etc.

For simplicity in the sequel, we focus ourselves in quadratic polynomials. The defi-
nitions we will see can be easily extended to polynomials of any degree.

3.6.2 Degree Falls and Trivial Degree Falls

Let f1, . . . , fm ∈ R be quadratic polynomials and suppose that f = p1f1 + · · · + pmfm
where each pi has degree d− 2. If deg(f) < d then the degree d homogeneous part of f ,
which is the same as that of p(h)

1 f1 + · · · + p
(h)
m fm, is zero. This motivates the following

definition.

Definition. Let F = (f1, . . . , fm) be a quadratic polynomial system. We say that
(h1, . . . , hm) ∈ (Rd−2)m is a degree fall in degree d of f1, . . . , fm if h1f1 + · · · + hmfm
has a degree strictly smaller than d.

Let f1, . . . , fm ∈ R be quadratic polynomials and consider the F−vector spaces ho-
momorphism

σd(f1, . . . , fm) : (Rd−2)m −→ R≤d
(h1, . . . , hm) 7−→ h1f1 + · · ·+ hmfm.

59

CHAPTER 3. COMPLEXITY ESTIMATES

There are always some predictable elements in the kernel of σd (f1, . . . , fm). For
instance, when d ≥ 4 the vector sij := fjei − fiej always lies in this kernel since fjfi −
fifj = 0. This example may seem a little fake since this is yielding “trivially” zero, but
a more interesting example can be found by considering the vectors

(
f q−1
j − 1

)
ej, since(

f q−1
j − 1

)
fj = f qj − fj = 0. We notice that these relations are not using the structure

of the polynomials at all, and they hold even if the pj ’s are just the names of some
variables. This motivates the following definition.

Definition. Consider the algebra R[y1, . . . , ym] with the relations yqj − yj = 0 and let
Tq(y1, . . . , ym) denote the set of all tuples (h1, . . . , hm) ∈ (R[y1, . . . , ym])m such that h1y1+
· · · + hmym = 0. Given a quadratic polynomial system (f1, . . . , fm) ∈ Rm, the set of
trivial syzygies of f1, . . . , fm is formed by all the polynomials in Tq(y1, . . . , ym) evaluated
at yj = fj for each j. We denote this set by Tq(f1, . . . , fm).

The degree d − 2 homogeneous parts of the trivial syzygies of f1, . . . , fm are clearly
degree falls in degree d of f1, . . . , fm, and these are known as trivial degree falls. These
degree falls are not interesting since they give no additional information about the
polynomials, as shown in [DS13]. We are now ready to define the concept of falling
degree.

Definition. Let F = (f1, . . . , fm) ∈ Rm be a quadratic polynomial system. We define its
falling degree as the smallest d such that a non trivial degree fall of f1, . . . , fm exists in
degree d.

Our conclusion is that the falling degree serves as a complexity parameter to bound
the running time of Groebner basis algorithms, and this is the parameter we use to ana-
lyze the security of our proposals in the upcoming chapters. A final remark, which will
be substantial in the mentioned analysis, is that the falling degree of a given system is
invariant under linear combinations of the polynomials and linear changes of variables.

Remarks about Different Complexity Parameters

We discussed the falling degree as an alternative to the degree of regularity, which is a
way of measuring the running time of Groebner basis algorithms. It is very common to
find the concept of falling degree defined here being referred as degree of regularity on
the literature. This, however, is a misunderstanding since

The falling degree and the degree of regularity are different concepts

Given an ideal I, it may be the case that its degree of regularity and falling degree
differ. What is certainly true is that for almost all systems these concepts give an idea
of arithmetic complexity for Groebner basis algorithms and therefore are very close in
general, but they are not necessarily equal.

60

Part II

Applications to the security of MPK
Cryptosystems

Chapter 4

Multivariate Public Key Cryptography

In this chapter we introduce basic ideas from Multivariate Public Key Cryptog-
raphy, including basic constructions and examples. This will give the context to
the New Alternatives we propose later on in this work

4.1 Preliminaries on Cryptography

We consider it appropriate to give a context on the general problem that is being ad-
dressed with MPKC, which is allowing a secret communication between two parties
(usually referred as Alice and Bob).

In this section, we exhibit the problem of secret communication and the solution
from Public Key Cryptography. We stress that we are going to keep an informal speech
during this section, and we refer the reader to formal definitions when needed.

4.1.1 Public Key Cryptography

Suppose that Alice have a message m and she wants Bob to learn this message while
guaranteeing that no one but Bob will be able to do so.

To solve this problem, suppose we have a function P such that

1. P is one-to-one1

2. P is very easy to evaluate for Alice (and in general for anyone who wishes to send
a message to Bob)

3. P is not easy to invert for anybody who simply knows P

4. Bob possesses some secret information that allows him to efficiently invert this
function2

The first three properties ensure that P is a One-way Function, and the last one that
it is a Trapdoor Function. See [KL07] for details on these concepts.

1we will see that many of our constructions satisfy a more relaxed condition which can be stated as
being “few-to-one”, that is, every element in the range of the function has “few” preimages

2from the properties it can be seen that necessarily this secret information can not be found from P
since in this case, anyone with access to this function would be able to invert just like Bob

CHAPTER 4. MULTIVARIATE PUBLIC KEY CRYPTOGRAPHY

Alice

m

Bob

c
m = P−1 (c)

P(m) = c

Figure 4.1: Protocol that allows Alice send her message to Bob securely

What Alice can do in order to solve her issue is evaluating m at P, obtaining P(m).
Then she can send this value to Bob, due to our assumptions about P, no one is able to
learn m from this value. Once Bob receives this value, he can use his secret information
to invert the function and therefore finding m. Figure 4.1 pictures this idea.

We now introduce some notation common in Cryptography

• The function P described above, along with all other information necessary to
evaluate it are often referred as the Public Key, since this is “public” for anyone
who wishes to send a message to Bob3;

• The secret information possessed by Bob is the Secret Key;

• Every possible message m in the domain of P is called a Plaintext, and every
element of the range of this function is known as a Ciphertext;

• Encryption is the act of evaluating the function P and Decryption is the act of
inverting it.

The general way that trapdoor functions are constructed is by means of a proce-
dure Gen that takes the secret information sk and outputs the correspondent trapdoor
function P that can be inverted with the secret key sk. It is clear that the procedure
Gen can not be invertible because in this case one would be able to recover the secret
information from the function, therefore violating its properties.

Example. (RSA) Consider two large prime numbers p and q, e some positive integer
and d such that ed ≡ 1 mod φ(N) with N = pq, where φ is the Euler’s totient function.
With this setting basic number theory can show that for every integer m between 0 and
n− 1 we have that

(me)d ≡ med ≡ m1 mod N.

Let P be the function that takes m and raise it to the e-th power and takes modulo N .
It is widely assumed that computing m mod N from P(m) is a difficult task without
additional information, but as we have seen, we can achieve this by having knowledge
of d since we simply compute m ≡ P(m)d mod N . If we keep d secret, then only
someone with this information will be able to decrypt; moreover, we found d by means

3if you are familiar with cryptography, then you probably regard the public key as some parameter pk
which is fed to a function Encpk(·); here we regard the public key P as this function itself, which is an
equivalent and more convenient approach

64

4.2. Multivariate Public Key Cryptosystems

of p and q, so at the end what must be kept secret is the prime factorization of N , so the
security of this cryptosystem heavily relies on the problem of factoring large numbers.
See [Sho05] for details on this cryptosystem.

4.1.2 Post-Quantum Cryptography

The development of Quantum-Computers is a very big research field with a lot of in-
vestment, and expert estimate that within the next two decades these computers could
be built. This may seem like good news, but this is a concern for the security of com-
munications.

RSA example we saw before is not merely a theoretical Public Key Cryptosystem,
many of our communications today actually use this cryptosystem to ensure privacy.
As we noticed there, an attacker would be able to learn the secret information if he
can factor large numbers into primes. Even though this is widely believed to be a hard
problem in a classical computers, an algorithm for quantum-computers developed by
Peter Shor [Sho99] can perform this task in only polynomial time.

The latter shows that cryptosystems based on problems like factoring (or finding
discrete logarithms, which is another widely used technique and can be also broken
with Shor’s algorithm) will not be secure in the near future, hence, we need to develop
new schemes whose security rely in different problems that can not be solved efficiently
even by a quantum computer. One of these problems is the MQ-problem, related to
polynomial system solving. We will discuss this in detail.

4.2 Multivariate Public Key Cryptosystems

During the rest of this work F will denote a finite field with q elements (q a prime
number) and K will denote a field extension of F of degree n (see section 6.1.1 in the
appendix for more details on these concepts). Recall that R≤d is the set of polynomials
in R = F[x1, . . . , xn] of degree at most d. Elements in R≤2 are known as quadratic
polynomials. A function F : Fn → Fm is called a regular function if it is given by m
multivariate polynomials (actually, one can easily prove that every function Fn → Fm is
regular once we impose the relations xqi = xi, see section 3.6.1), and it is quadratic if
each component is a quadratic polynomial.

Consider the following computational problem.

MQ Problem Let f1, . . . , fn ∈ R be quadratic multivariate polynomials chosen uni-
formly at random. Find (a1, . . . , an) ∈ Fn, if there is any, such that for all i = 1, . . . , n

fi(a1, . . . , an) = 0.

There are many reasons to believe that this problem is hard, even for quantum
computers. From the theoretical point of view, it has been proved that the problem of
deciding whether or not a given polynomial system has a solution or not is NP-complete
[GJ90]. This is valuable since we do not expect NP to be equal to P even in the quantum
model of computation. However, there may be NP-complete problems whose difficulty

65

CHAPTER 4. MULTIVARIATE PUBLIC KEY CRYPTOGRAPHY

in the average case is not that hard. Nonetheless, this is not the case with the MQ
problem since there are not known better techniques for polynomial systems over finite
fields than the general ones we have studied in the first part of this work, and we have
seen there that random systems are ought to behave as regular sequences and therefore,
the best approach to this problem is exponential in n (see Theorem 3.2.2). Moreover,
nowadays there is no known polynomial-time quantum algorithm to solve the problem.

This problem will be the starting point for us to build the so-called Multivariate
Public Key Cryptosystems. For these schemes, the trapdoor function is a function P :
Fn → Fm where each coordinate is given by a polynomial, and the secret key is some
secret information allowing us to invert this function.

Assumption Given F : Fn → Fn defined by n quadratic polynomials chosen uniformly
at random and given c in the range of F , it is difficult to find a ∈ Fn such that F (a) = c.

Remark. To find such a one must solve the system of equations p1(x) = c1, . . . , pn(x) =
cn, where the pi’s are the quadratic polynomials defining F and c = (c1, . . . , cn). By
defining the quadratic polynomials qi(x) := pi(x) − ci, this is the same as solving the
system q1(x) = 0, . . . , qn(x) = 0. This may look the same as the MQ problem, but the
difference here is that the qi’s are not chosen at random! for instance, we know a priori
that the system possesses at least one solution, which is not the general case in the MQ
problem. However, experimental evidence shows that it does not hurt to assume that
the latter problem is difficult too, which is the assumption we need to make in order to
build our trapdoor functions.

What we have so far is that if we pick a random function from the set of all quadratic
regular functions Fn → Fn, the chances are that this function is not easy to invert.
Moreover, another reasonable assumption is that regular functions Fn → Fn chosen at
random are very likely to be “few-to-one”.

In order to construct trapdoor functions, we only need to describe a generation pro-
cedure Gen that picks some secret information and outputs a regular quadratic function
which looks like random and is easy to invert using this secret information.

In what follows we describe the generation procedure that outputs regular functions
easy to invert with the secret information. Notwithstanding, there is not a known way
today we can ensure that these functions are easy to invert only if the secret information
is possessed (which is the property we need on a trapdoor function). In fact, for many
constructions today either the generation procedure is invertible (that is, the secret
information can be recovered from the regular function) or the behavior of the resulting
regular functions is not like that of random ones, resulting in easier to invert functions.

As a final note, we extend our constructions to trapdoor functions Fn → Fm, where
m may be different than n. The first observation is that m must be at least n since
otherwise our functions would not be “few-to-one”. On the other hand, if m is very
large with respect to n, theory developed in [Bar04] shows that our systems may be
easier to solve, yet it is not harming if m = O(n).

Also, please note that although the assumption is stated for quadratic polynomials,
it can be easily generalized for degree d ≥ 2 polynomials without loss on the hardness.
Given this, we will not restricts ourselves to quadratic polynomials in the exposition of
the general constructions.

66

4.2. Multivariate Public Key Cryptosystems

x1

x2
...
xn

 Linear transformation S

(Mixes the variables)

∑
s1ixi∑
s2ixi
...∑
snixi

Regular function F

(Evaluate at the polynomials)
f1 (
∑
xi, . . . ,

∑
xi)

f2 (
∑
xi, . . . ,

∑
xi)

...
fm (

∑
xi, . . . ,

∑
xi)

 L. transformation T

(Mixes the polynomials)

∑
fj (
∑
xi, . . . ,

∑
xi)∑

fj (
∑
xi, . . . ,

∑
xi)

...∑
fj (
∑
xi, . . . ,

∑
xi)

Figure 4.2: Construction of MPK Cryptosystems from easy-to-invert regular functions

4.2.1 First Reduction: Bipolar Construction

Definition. Given a regular function F : Fn → Fm, S : Fn → Fn and T : Fm → Fm
linear transformations, we define the bipolar construction of F, S and T as the regular
function P : Fn → Fm given by P = T ◦ F ◦ S.

It can be easily seen that if each polynomial in F has degree d, then each polynomial
in P also has degree d.

Assume now that we have a regular function F : Fn → Fm with the following
property: Any equation F (x1, . . . , xn) = (c1, . . . , cn) where (c1, . . . , cn) ∈ F (Fn) can be
efficiently solved4. Clearly, F would not serve as a public key itself since anyone is able
to invert it, however, we can create a MPK Cryptosystem from F by choosing uniformly
at random two linear transformations S : Fn → Fn and T : Fm → Fm and considering
P = T ◦F ◦S, the bipolar construction of F, S and T . The idea with this construction is
that S mixes the variables and T mixes the equation, therefore hiding the structure of
the function F . Figure 4.2 shows how the process work.

An important property of this construction is that someone who knows F , S
and T can easily invert any equation of the form P (x1, . . . , xn) = (c1, . . . , cn) where
(c1, . . . , cn) ∈ P (Fn) since P−1 = S−1 ◦ F−1 ◦ T−1 and we are assuming that F is easy to
invert (here, we must notice that T−1(c1, . . . , cn) ∈ F (Fn)). Therefore, it makes sense
to consider F, S and T as secret information and P as the public information. From
the security point of view, we want to make sure that someone who simply sees P is
not able to recover F, S and T , which is some kind of “factoring problem” for maps.
This problem is assumed to be hard in general, and is closely related to the Jacobian
conjecture on Invertible Polynomial Maps. Unfortunately, there may be some F ’s for
which this problem is not difficult, and this may lead to attacks like MinRank attack.

On the other hand, an important concern is that we can not ensure that the only
way to invert the function P is by making use of F , S and T . For instance, if F is linear

4we restrict ourselves to only inverting the function where there is indeed a preimage of the element
involved. This makes sense since we only want to decrypt valid ciphertexts. Some of the cryptosystems
we will encounter only allow us to invert in this situation, and they would fail to decrypt if a non-valid
ciphertext is asked for decryption

67

CHAPTER 4. MULTIVARIATE PUBLIC KEY CRYPTOGRAPHY

then P is linear as well, and then of course everyone can invert the function P without
having any knowledge of F , S nor T . It is clear that one would not take F to be linear
for this construction, but deeper conditions can be found, for example, F is easy to
invert if it has a low falling degree since Lazard’s algorithm finishes at an early stage,
however, we saw in section 3.6 that bipolar constructions inherit the falling degree from
F and hence P would be easy to invert for anyone as well. The precise requirement for
F so that the bipolar construction P is not easy to invert is not clear. In fact, many of
the defeated MPK Cryptosystems are in such a status due to the fact that the function P
has a low falling degree and therefore is easy to invert.

In any case, in many cases this can be assumed to be a hard problem and therefore
it makes sense to look at easy-to-invert regular functions F : Fn → Fm to build trap-
door functions by doing the Bipolar Construction, and now we focus on the problem of
finding such F ’s. We stress that we do not know yet a sufficient condition on F that
guarantees that the bipolar construction is difficult to factorize or more generally to
invert.

4.2.2 Second Reduction: Lifting Idea

According to the previous section, now we need to focus in building regular functions
F : Fn → Fm that are easy to invert. The method we will use for this is known as the
lifting idea, and involves an extension field of F and univariate polynomials over this
extension.

Consider a field extension K of F of degree n, and consider φ : K → Fn to be the
natural linear transformation between these vector spaces (see section 6.1.1 for more
details on this). Recall our notation R := F[x1, . . . , xn]. Given a nonzero natural number
b, any other nonzero natural number a can be written uniquely as a = c1b

0 + c2b
1 + · · ·+

c`b
`−1 where 0 ≤ ci < b for all i. We say that (c1, . . . , c`) is the expansion of a in base

b, and we refer to d =
∑`

i=1 ci as the b−Hamming weight of a. In order to extend the
definition we define the b−Hamming weight of a = 0 to be 0. To illustrate the concept,
a has q−Hamming weight 2 if and only if it has the form a = qi + qj.

Definition. The weight of a monomial Xa ∈ K[X] is the q−Hamming weight of a. A
polynomial F(X) ∈ K[X] is said to be homogeneous of weight d if all of its monomials
have weight d, and it is said to have weight d if all of its monomials have weight at most
d.

The importance of the concept of weight is that it corresponds to degree on multi-
variate polynomials under what we call Lifting and Droppings, as we can see in the
following theorem.

Theorem 4.2.1. (Correspondence of Polynomials). Let d ≥ 0 be an integer, let K[X]d
denote the set of homogeneous polynomials in K[X] of weight d and let (Rd)

n = Rn
d denote

the set of all functions F : Fn → Fn where each coordinate is a homogeneous polynomial
in F[x1, . . . , xn] of degree d, these sets are naturally F-vector spaces. The following is a
well-defined bijective linear transformation

Drp: K[X]d −→ Rn
d

F 7−→ φ ◦ F ◦ φ−1.

68

4.2. Multivariate Public Key Cryptosystems

whose inverse is

Lft : Rn
d −→ K[X]d

F 7−→ φ−1 ◦ F ◦ φ.

The proof of this theorem can be found in section 6.2 in the appendix. The names
Lft (lifting) and Drp (dropping) arise from the following commutative diagram, which
illustrates the correspondence.

K F // K
φ
��

Drp(F)

��

Lft(F)

OO

Fn F //

φ−1

OO

Fn

Clearly, F is invertible if and only if F is, so we can focus now in finding easy-to-
invert univariate polynomials F(X) ∈ K[X] with weight at most d. Even though this
correspondence exists for degree higher than 2, it has been used so far only for the
quadratic case. Section 6.3 shows that this procedure is very efficient.

As a comment, there is not a restriction in using only one polynomial. In the sum-
mary below we state the generalization of this.

4.2.3 General Construction

To sum up, we describe the general procedure to build a trapdoor function P : Fn → Fm
where m = tn.

1. Choose some secret linear transformations S, T1, . . . , Tt : Fn → Fn

2. Find t univariate polynomials F1, . . . ,Ft ∈ K[X] having weight at most d such
that system of equations (F1(X) = Y1, . . . ,Ft(X) = Yt) where Yi ∈ Fi(K) can be
efficiently solved

3. The trapdoor function is P : Fn → Fm given by P = (P1, . . . , Pt) with Pi =
Ti ◦Drp (F) ◦ S

This construction is depicted in figure 4.3.
So far we have considered degree d polynomials, with d ≥ 2; however, many of the

constructions so far involve only quadratic polynomials. This makes sense due to the
following considerations

• There are
(
n+d−1

d

)
= O(nd) monomials of degree d, so we need O(mnd) elements

from the field F to store m polynomials in R of degree d. If d = 2 then this is a
manageable size, by raising d one gets sizes beyond practical applications.5

• In order for this construction to be efficient one needs to be able to compute
Drp(F) from F in an efficient manner. This is well known in the quadratic case,
as we describe in section 6.3.

5d = 3 is still manageable, which is the starting point for our contributions in next section

69

CHAPTER 4. MULTIVARIATE PUBLIC KEY CRYPTOGRAPHY

K (F1,...,Ft)
// Kt

φ×···×φ
��

Fn S //

Trapdoor Function

33Fn (Drp(F1),...,Drp(Ft))
//

φ−1

OO

(Fn)t
T1×···×Tt // Fm

Figure 4.3: General Construction of Multivariate Trapdoor Functions

4.3 Examples: HFE and ZHFE

We now discuss two examples of MPK Cryptosystems: Hidden Field Equations (HFE)
and ZHFE. The former was proposed by Patarin in 1996 [PG97], and was a good alter-
native until Kipnis and Shamir proposed the so-called MinRank attack [KS99]. It was a
theoretical attack back then, but subsequent work by L. Perret et al [BFP13] improved
this attack for any set of practical parameters.

On the other hand, ZHFE was proposed as an alternative to avoid the MinRank
attack. It was presented in 2014 by Porras et al. [PBD15] and it was well received
by the MPKC community for its new and creative idea. Unfortunately, it had efficiency
issues in its very beginning. Almost one year after its release, an improvement on
the efficiency of ZHFE and a security analysis based in the min-rank were published
[BCE+16, PS16]. Although the former gave a hope on the future of ZHFE as a usable
primitive, the latter showed a weakness on the cryptosystem that led to the necessity of
reformulating it.

4.3.1 HFE

Recall that we need to find polynomials F1(X), . . . ,Ft(X) ∈ K[X] which are, in con-
junction, easy to invert. In finite fields, just like in the field of real numbers, we have
algorithms that can efficiently find the roots of a given univariate polynomial if its de-
gree is small enough (e.g. Berlekamp and Cantor-Zassenhaus algorithms, see [LN97]).
Given this, it is natural to consider low degree polynomials since these are naturally
invertible.

Definition

In HFE, the core function is given by a low degree polynomial of weight two. More
precisely, fix a parameter D and consider a polynomial of the form

F(X) =
∑

qi+qj≤D

αijX
qi+qj

(for illustrative reasons we assumeF is homogeneous). IfD is low enough, this function
is easy to invert. The trapdoor function is built then by choosing some secret linear
transformations S, T : Fn → Fn and computing P = T ◦ φ ◦ F ◦ φ−1 ◦ S.

70

4.3. Examples: HFE and ZHFE

Security Analysis

The HFE Cryptosystem has a vulnerability against what is known as a MinRank attack.
Since we will encounter the same type of attack in the next chapter, it is worth to see
the most relevant aspects of it. At first, write the polynomial F as

F(X) =
(
Xq0 Xq1 · · · Xqn−1)

∗ · · · ∗ 0 · · · 0
...

...
∗ · · · ∗ 0 · · · 0
0 · · · 0 0 · · · 0
...
0 · · · 0 0 · · · 0

Xq0

Xq1

...
Xqn−1

where only the r × r square on the top left of this matrix is nonzero (r = blogqDc).
This should look familiar to the representation of quadratic forms in several variables
but using the “variables” Xqi instead (recall that Xqn = X for any particular X ∈ K, so
we only need to consider these powers up to Xqn−1). Notice that the inner matrix has a
low rank r (since D is small, by construction).

Proposition 4.3.1. Let Pi ∈ Mn×n(F) be the matrix representing the ith quadratic poly-
nomial of the trapdoor function P = T ◦ φ ◦ F ◦ φ−1 ◦ S (that is, each component of P is
pi(x) = xTPix), then there exist λ1, . . . , λn ∈ K such that the matrix

∑n
i=1 λiPi has low

rank r.

Given matrices P1, . . . , Pn, the problem of finding scalars λ1, . . . , λn ∈ K such that
the matrix

∑n
i=1 λiPi has low rank is known as the MinRank problem, and it is in general

a very hard computational problem. However, this is easy to solve in our case since we
know that there is at least one solution for it at a very low rank r, and these scalars can
be found for instance by methods like KS modeling or Minors modeling [KS99]. The
first negative implication of this property is that the trapdoor functions from HFE are
distinguishable from random regular functions, which is undesirable. Moreover, one is
able to build (equivalent) secret keys that allow for decryption using the scalars that
one obtain directly from the trapdoor function, so our construction is not secure.

4.3.2 ZHFE

It is worth mentioning ZHFE, which appeared as an alternative to overcome the Min-
Rank attack. The basic construction for the core polynomial is as follows. Just like in
HFE, we begin by fixing a small parameter D that will allow us to invert. Then we look
for scalars α1, . . . , α2n, β1, . . . , β2n ∈ K and two weight 2 polynomials F(X) and F̃(X)
satisfying that the polynomial

Ψ(X) = X
(
α1F q

0

+ · · ·+ αnF q
n−1

+ β1F̃ q
0

+ · · ·+ βnF̃ q
n−1
)

+

Xq
(
αn+1F q

0

+ · · ·+ α2nF q
n−1

+ βn+1F̃ q
0

+ · · ·+ β2nF̃ q
n−1
)
,

71

CHAPTER 4. MULTIVARIATE PUBLIC KEY CRYPTOGRAPHY

has low degree D (it is important to note that a weight two polynomial raised to a
Frobenius power qi is again weight 2). These are obtained by solving sparse linear
systems of equations (see [BCE+16] for more details on this). Our central function will
be G = (F , F̃). To invert this function, suppose we are given (Y0, Y1) ∈ G(K), we want
to find X such that G(X) = (Y0, Y1), that is, F(X) = Y0 and F̃(X) = Y1. Clearly, such X
will also satisfy the low degree polynomial equation

Ψ(X) = X
(
α1Y0 + · · ·+ αnY

qn−1

0 + β1Y1 + · · ·+ βnY
qn−1

1

)
+

Xq
(
αn+1Y0 + · · ·+ α2nY

qn−1

0 + βn+1Y1 + · · ·+ β2nY
qn−1

1

)
.

which we can solve, finding therefore the preimages of (Y0, Y1).

Security Analysis

Write
Ψ = X

[
L0

(
F, F̃

)]
︸ ︷︷ ︸

Ψ0

+Xq
[
L1

(
F, F̃

)]
︸ ︷︷ ︸

Ψ1

.

and recall that there are no terms of degree higher than D in Ψ. However, many of
these terms come either from Ψ0 or Ψ1 (not both!). From this observation it can be seen
that the matrices representing the quadratic forms L0

(
F, F̃

)
and L1

(
F, F̃

)
have the

following shape

∗ ∗ ∗ ∗
∗ ∗ ∗ . . . ∗ ∗ . . . ∗
∗ ∗ ∗ ∗

... . . .
∗ ∗ ∗ ∗
∗
...
∗

,

∗ ∗ ∗ ∗ ∗ . . . ∗
∗ ∗ ∗ . . . ∗
∗ ∗ ∗ ∗

... . . .
∗ ∗ ∗ ∗
∗
...
∗

where each block on the top-left is r × r, with r = dlogqDe. Hence, these matrices
have a low rank of r + 1. This may seem as the attack on HFE, but the main difference
is that the low rank is possessed by L0 and L1, not F and F̃ . However, it has been
discovered that this is not a barrier for a similar attack to that on HFE [PS16], and this
cryptosystem is unfortunately insecure.

72

Chapter 5

New Alternatives Using Cubic
Polynomials

Ideas for MPK Cryptosystems are presented in this chapter. We also explore
some attacks that partially break these schemes.

Many of the constructions seen so far un MPKC use quadratic polynomials. This
makes sense since our assumptions say that these systems are difficult to solve, and
from a theoretical point of view every polynomial system can be made quadratic by
adding enough equations and renaming monomials. Another advantage of considering
these systems is that it takes O(mn2) elements from the field F to store m quadratic
polynomials, which is a reasonable number.

Our contribution is related to the use of cubic polynomials instead of quadratic. This
will give us more flexibility but we will need O(mn3) elements from F to storem of these
polynomials. However, this number is still manageable, and the possible advantages of
using these may overcome the bottlenecks.

In the first section, we describe a first proposal for a Trapdoor function that happens
to be breakable by a MinRank attack similar to that on HFE. Then we move to a variation
of this proposal which seems to avoid this problem, but then a deeper analysis using the
Falling Degree will expose a weakness in terms of a Direct Algebraic Attack. Finally, we
explore the possibility of artificially raising the falling degree, but, as we will see, an
“intelligent” attack can overcome this method.

5.1 Multivariate Noisy Encryption Scheme

We describe the first proposal for the cryptosystem, and we describe the attack that led
to a reformulation of it.

5.1.1 Description

We will work in the same context as in the previous chapter: q is a prime number, n a
positive integer, F a finite field of size q and K a field extension of F of degree n. For

CHAPTER 5. NEW ALTERNATIVES USING CUBIC POLYNOMIALS

our trapdoor function we will need a small parameter r which we will use for inverting
the central function.

To build the central function, we begin by picking completely at random a weight 2
polynomial F ∈ K[X]. We also choose at random for each j = 0, . . . , r, a q−weight 1
polynomialMj ∈ K[X] and a weight 3 polynomial G(X) ∈ K[X] whose biggest power
is 3qr. As usual, we choose two invertible linear transformations S, T : Fn → Fn. Finally,
we consider the weight 3 polynomial H : K→ K given by

H(X) =
r∑
j=0

XqjMj (F ′(X)) + G(X) (5.1)

where F ′ = F ◦ φ−1 ◦ S−1 ◦ φ.
The trapdoor function is then P : Fn → F2n given by

P = (φ ◦ F ◦ φ−1, T ◦ φ ◦ H ◦ φ−1 ◦ S),

while the secret information is (F ,Mi,G,H, S, T).
We refer to G as the noise, since it is intended to hide the structure

∑
XqjMj (F ′(X))

Remark. Since F is chosen completely at random, we do not need to apply the linear
transformation T at the end. In addition to this, one may apply S on the right to F and
by doing so one can use F directly on equation (5.1) rather than F ′. However, we keep
the construction in this fashion to stress that the left part of the public key is completely
random.

To invert P we proceed as follows. Suppose that we are being given c = (c1, . . . , c2n)
in the range of P , we want to solve the simultaneous equations F (φ−1(x)) = Z1 and
H (φ−1(Sx)) = Z2 where Z1 = φ−1(c1, . . . , cn) and Z2 = φ−1 ◦ T−1(cn+1, . . . , c2n). By
setting X = φ−1(Sx), this is the same as F ′ (X) = Z1 and H (X) = Z2. Any solution to
this system will also satisfy the polynomial equation

Z2 =
r∑
j=0

XqjMj (Z1) + G(X),

and the parameter r is chosen small enough so that this equation can be solved.

5.1.2 Computation of Cubic Droppings

If we want to work with weight three polynomials, then we must be able to compute
T ◦φ ◦H◦φ−1 ◦S from S, T and H. As it has been mentioned before, this is well known
in the quadratic case, but we needed to make an effort to develop similar theory for the
cubic case.

We begin by introducing some notation. We denote the i−th row of a matrix M as
M(i) (as a row vector) and its entry s, t as M (t)

(s). We write [αij]ij for the matrix whose i, j
entry is αij. We denote by C the companion matrix of the irreducible polynomial that

74

5.1. Multivariate Noisy Encryption Scheme

produces the field K so that for any α ∈ K we have that φ (αyj) = Cj · φ(α) (see lemma
6.2.2). Additionally, let Dj denote the matrix[

0 In−j
Ij 0

]
where I` is the `× ` identity matrix.

Finally, we let x and X denote the vectors (x1, . . . , xn) and (Xq0 , . . . , Xqn−1
), respec-

tively, which are often considered as n× 1 matrices.

Proposition 5.1.1. If F(X) = XTFX, G(X) =
∑r

j=0 X
qj
(
XTGjX

)
and for each j =

0, . . . , r: Mj(X) =
∑n−1

i=0 mj,iX
qi where F,Gj ∈ Mn×n (K) and mj,i ∈ K, then we can

write H(X) as

H(X) =
r∑
j=0

Xqj
(
XTAjX

)
(5.2)

with

Aj =
n−1∑
i=0

mj,iFi +Gj,

where Fi := DT
i

[(
F

(t)
(s)

)qi]
st

Di.

Remark. The polynomial G has a degree of at most 3qr, hence, the matrix Gj is zero
for j > r. Besides, for j ≤ r, the entry s, t of the matrix Gj is zero whenever r <
max(s− 1, t− 1).

Proof. By definition, we have

H(X) =
r∑
j=0

XqjMj (F(X)) + G(X)

=
r∑
j=0

Xqj

[
n−1∑
i=0

mj,i (F(X))q
i

]
+

r∑
j=0

Xqj
(
XTGjX

)
=

r∑
j=0

Xqj

[
n−1∑
i=0

mj,i (F(X))q
i

+ XTGjX

]
.

For each i, (F(X))q
i

is again a quadratic form and it is represented by a cyclic shift
of the matrix F , and raising its entries to the power qi. More specifically, this matrix
may be written as [(

F
(t−i mod n)
(s−i mod n)

)qi]
st

,

but it can be checked that this matrix is equal to Fi, hence

H(X) =
r∑
j=0

Xqj

[
n−1∑
i=0

mj,iXTFiX + XTGjX

]

=
r∑
j=0

Xqj

(
XT
[
n−1∑
i=0

mj,iFi +Gj

]
X

)
.

75

CHAPTER 5. NEW ALTERNATIVES USING CUBIC POLYNOMIALS

Let Aj := ST∆TAj∆S where ∆ is the matrix from section 6.1.2 and write the entries
of this matrix as a linear combination of powers of y and distribute with respect to these
powers, we obtain an expression of the form

Aj = y0B0,j + · · ·+ yn−1Bn−1,j

where each B matrix lies inMn×n(F).

Proposition 5.1.2. The second component from the public key can be calculated as

T ◦ φ ◦ H ◦ φ−1 ◦ S(x) = T

r∑
j=0

CjDjx.

where

Cj :=
[(
xTB0,jx

)
· C0 + · · ·+

(
xTBn−1,jx

)
· Cn−1

]
∈Mn×n (F[x1, . . . , xn])

and Dj := ∆−1Dj∆S ∈Mn×n(F)

Proof. Replacing X by φ−1 (Sx) in (5.2) and using the properties of ∆ discussed in
section 6.1.2, we have

H
(
φ−1(Sx)

)
=

r∑
j=0

(
∆(j+1)Sx

)
·
(
xTST∆TAj∆Sx

)
.

Since ST∆TAj∆S is equal to y0B0,j + · · ·+ yn−1Bn−1,j, we obtain

H
(
φ−1(Sx)

)
=

r∑
j=0

(
∆(j+1)Sx

)
·
(
y0xTB0,jx + · · ·+ yn−1xTBn−1,jx

)
=

r∑
j=0

(
y0 ·

(
∆(j+1)Sx

)
·
(
xTB0,jx

)
+ · · ·+ yn−1 ·

(
∆(j+1)Sx

)
·
(
xTBn−1,jx

))
.

We now apply φ to the previous expression, which yields

φ
(
H
(
φ−1(Sx)

))
= φ

 r∑
j=0

y0 · (∆(j+1)Sx
)
·
(
xTB0,jx

)︸ ︷︷ ︸
∈F

+ · · ·+ yn−1 ·
(
∆(j+1)Sx

)
·
(
xTBn−1,jx

)︸ ︷︷ ︸
∈F

=

r∑
j=0

[(
xTB0,jx

)
· φ
(
y0
(
∆(j+1)Sx

))
+ · · ·+

(
xTBn−1,jx

)
· φ
(
yn−1

(
∆(j+1)Sx

))]
=

r∑
j=0

[(
xTB0,jx

)
· C0φ

(
∆(j+1)Sx

)
+ · · ·+

(
xTBn−1,jx

)
· Cn−1φ

(
∆(j+1)Sx

)]
=

r∑
j=0

[(
xTB0,jx

)
· C0 + · · ·+

(
xTBn−1,jx

)
· Cn−1]φ (∆(j+1)Sx

)
.

76

5.1. Multivariate Noisy Encryption Scheme

On the other hand, we have

φ
(
∆(j+1)Sx

)
= ∆−1

(
(∆(j+1)Sx)q

0

, (∆(j+1)Sx)q
1

, . . . , (∆(j+1)Sx)q
n−1
)T

= ∆−1
(
∆(j+1)Sx,∆(j+2)Sx, . . . ,∆(n)Sx,∆(1)Sx, . . . ,∆(j)Sx

)T

= ∆−1

∆(j+1)

∆(j+2)
...

∆(n)

∆(1)
...

∆(j)

Sx = ∆−1

[
0 In−j
Ij 0

]
∆Sx = Djx.

so

φ ◦ H ◦ φ−1(Sx) =
r∑
j=0

[(
xTB0,jx

)
· C0 + · · ·+

(
xTBn−1,jx

)
· Cn−1

]︸ ︷︷ ︸
Cj

Djx.

Finally, we apply T to obtain

T ◦ φ ◦ H ◦ φ−1(Sx) = T
D∑
j=0

CjDjx.

This proposition gives a closed expression of the public key polynomials that arise
from T ◦ φ ◦ H ◦ φ−1 ◦ S. However, to find these polynomials, we need to make compu-
tations over F[x1, . . . , xn]. To avoid this computation, we represent each one of those n
cubic homogeneous polynomials q1, . . . , qn (following the same idea of the representa-
tion of H) as

qi(x1, ..., xn) =
n∑
j=1

xi
(
xTQi,jx

)
where each Qi,j is a n×n matrix over F and we give closed formulas for these matrices,
which will be useful for the implementation.

Proposition 5.1.3. Let q1, ..., qn be the cubic homogeneous polynomials of the composition
T ◦ φ ◦ H ◦ φ−1 ◦ S, then, for all s we have

qs (x) =
n∑
t=1

xt
(
xTQs,tx

)
where

Qs,t =
r∑
j=0

n−1∑
i=0

Bi,j

[
T · Ci ·Dj

](t)
(s)
.

77

CHAPTER 5. NEW ALTERNATIVES USING CUBIC POLYNOMIALS

Proof. Let

A := T
D∑
j=0

CjDj ∈Mn×n (F[x1, . . . , xn]) ,

then by the previous proposition we have that

A(t)
(s) = xTQs,tx,

so getting a hold of each A(t)
(s) will give us the matrices Qs,t.

From its definition, it can be easily seen that the entry s, t of the matrix Cj is given
by

xT

(
n−1∑
i=0

Bi,j

(
Ci
)(t)

(s)

)
x,

so

A = T
r∑
j=0

CjDj

= T
r∑
j=0

[
xT

(
n−1∑
i=0

Bi,j

(
Ci
)(t)

(s)

)
x

]
st

[(
Dj

)(t)

(s)

]
st

= T
r∑
j=0

[
n∑
`=1

(
xT

(
n−1∑
i=0

Bi,j

(
Ci
)(`)

(s)

)
x

)(
Dj

)(t)

(`)

]
st

= T
r∑
j=0

[
xT

(
n∑
`=1

n−1∑
i=0

Bi,j

(
Ci
)(`)

(s)

(
Dj

)(t)

(`)

)
x

]
st

= T
r∑
j=0

[
xT

(
n−1∑
i=0

Bi,j

n∑
`=1

(
Ci
)(`)

(s)

(
Dj

)(t)

(`)

)
x

]
st

= T

r∑
j=0

[
xT

(
n−1∑
i=0

Bi,j

(
Ci ·Dj

)(t)

(s)

)
x

]
st

=
[
T

(t)
(s)

]
st

[
xT

(
r∑
j=0

n−1∑
i=0

Bi,j

(
Ci ·Dj

)(t)

(s)

)
x

]
st

=

[
n∑
`=1

T
(`)
(s)x

T

(
r∑
j=0

n−1∑
i=0

Bi,j

(
Ci ·Dj

)(t)

(`)

)
x

]
st

=

[
xT

(
r∑
j=0

n−1∑
i=0

Bi,j

n∑
`=1

T
(`)
(s)

(
Ci ·Dj

)(t)

(`)

)
x

]
st

=

[
xT

(
r∑
j=0

n−1∑
i=0

Bi,j

(
T · Ci ·Dj

)(t)

(s)

)
x

]
st

and this concludes the result.

78

5.1. Multivariate Noisy Encryption Scheme

For the implementation, we will give an alternative form of the matrices Qs,t.

Proposition 5.1.4. The s′-th row of each matrix Qs,t is given by

(Qs,t)(s′) =

D∑
j=0

[(
T · C0 ·Dj

)(t)
(s)
, · · · ,

(
T · Cn−1 ·Dj

)(t)
(s)

]
1×n

[
φ
((
Aj

)(1)
(s′)

)
, · · · , φ

((
Aj

)(n)
(s′)

)]
n×n

Proof. This is basically a consequence of noticing that by construction(
(B0,j)

(t′)
(s′) , · · · , (Bn−1,j)

(t′)
(s′)

)T
= φ

((
Aj
)(t′)

(s′)

)

5.1.3 Performance

What we have seen in the previous section makes feasible the idea of using cubic drop-
pings. In table 6.7 in section 6.4.2 we can see the timings for the key generation process
using this idea given the secret key, along with encryption and decryption times for sev-
eral sets of parameters.

5.1.4 Security analysis

Some of the motivations for using cubic polynomials instead of quadratic is that here we
have more “freedom” to produce polynomials. For instance, we can multiply linear and
quadratic polynomials together, among several other interesting operations. Another
observation is that the MinRank attack on HFE and ZHFE works because we have a very
clear way of representing quadratic forms, which has very nice algebraic properties; this
is not the case with cubic forms, where there is not a clear way of handling them.

Like in HFE and ZHFE we have in our first attempt a small parameter r, which may
look like trouble. We were confident at the beginning with the lack of a way of repre-
senting cubic forms to make use of this small value, however, by representing the cubic
forms in certain way, one can develop an attack that recover the secret information.

Consider the following way of representing the weight 3 polynomial H

H(X) =
[
Xq0 , . . . , Xqn−1

]
︸ ︷︷ ︸

XT

A

Xq0Xq0

Xq0Xq1

...
Xq0Xqn−1

Xq1Xq0

...
Xq1Xqn−1

...
Xqn−1

Xq0

...
Xqn−1

Xqn−1

︸ ︷︷ ︸

X̃

(5.3)

79

CHAPTER 5. NEW ALTERNATIVES USING CUBIC POLYNOMIALS

where A is a n× n2 matrix over K. From equation (5.1), since the maximum degree of
the q-weight 3 polynomial G(X) is qr + qr + qr, we have that H(X) has no monomials of
the form Xqi+qj+qk with at least two of i, j, k greater than r. According to this, one of the
possible A’s representing H is such that all but its first r+ 1 rows are zero. In particular,
A has a low rank of at most r + 1. We can apply the same sort of representation to
each cubic form of the public key. Surprisingly, as in the quadratic case, the low rank
is inherited by these matrices and unfortunately this yields an attack that allows us to
recover S, T and H.

Step 1: Representing the polynomials from P

In this section we will encounter several matrices with n2 rows or columns. When this
is the case, these rows or columns will be indexed by tuples

(1, 1), . . . , (1, n), (2, 1), . . . , (2, n), . . . , (n, 1), . . . , (n, n).

Considering that xT∆T
(i) = ∆(i)x = Xqi−1 and ∆x = X where φ(X) = x, we get from

(5.3) that

H
(
φ−1(x)

)
= (∆x)T A

xT∆T
(1)∆(1)x

xT∆T
(1)∆(2)x
...

xT∆T
(1)∆(n)x

xT∆T
(2)∆(1)x
...

xT∆T
(2)∆(n)x

...
xT∆T

(n)∆(1)x
...

xT∆T
(n)∆(n)x

= xT∆TA ·

xT∆T
(1)∆(1)x

xT∆T
(1)∆(2)x
...

xT∆T
(1)∆(n)x

xT∆T
(2)∆(1)x
...

xT∆T
(2)∆(n)x

...
xT∆T

(n)∆(1)x
...

xT∆T
(n)∆(n)x

.

Let ∆̃ be the n2 × n2 matrix whose (i, j), (k, `) entry equals
(

∆T
(i)∆(j)

)(`)

(k)
= ∆

(k)
(i) ·∆

(`)
(j) so

that xT∆T
(i)∆(j)x = ∆̃(i,j)x̃ where

x̃ = [x1x1 · · ·x1xn | x2x1 · · · x2xn | · · · | xnx1 · · · xnxn]T ,

then
H
(
φ−1(x)

)
= xT∆TA∆̃x̃.

Now let S̃ be the n2 × n2 matrix whose (i, j), (k, `) entry equals
(
ST(i)S(j)

)(`)

(k)
, we can

verify then that (̃Sx) = S̃x̃ and therefore

H
(
φ−1(Sx)

)
= (Sx)T∆TA∆̃S̃x̃ = xTST∆TA∆̃S̃x̃.

80

5.1. Multivariate Noisy Encryption Scheme

Since A has a rank of at most r + 1, it is very likely that the matrix ST∆TA∆̃S̃ will
have this rank too. Now write the matrix ∆TA∆̃ as y0R1 + · · ·+ yn−1Rn where each Ri’s
has its entries in F, then

H
(
φ−1(Sx)

)
= xTST∆TA∆̃S̃x̃

= xTST
(
y0R1 + · · ·+ yn−1Rn

)
S̃x̃

= y0
(
xTSTR1S̃x̃

)
+ · · ·+ yn−1

(
xTSTRnS̃x̃

)
,

since each matrix STR1S̃ has its entries in F, we conclude that

φ ◦ H ◦ φ−1 ◦ S (x) =
(
xTSTR1S̃x̃, . . . ,xTSTRnS̃x̃

)T
,

and hence, after we apply T we get

T ◦ φ ◦ H ◦ φ−1 ◦ S (x) =

(
n∑
j=1

T
(j)
(1)x

TSTRjS̃x̃, . . . ,
n∑
j=1

T
(j)
(n)x

TSTRjS̃x̃

)T

,

For each i, letQi ∈Mn×n2 (F) be a matrix that represents the i−th component of the
composition T ◦φ◦H◦φ−1◦S in a similar manner as (5.3), that is, the i−th component of
this composition is given by xTQix̃. The previous expression shows that these matrices
can be taken as

Qi =
n∑
j=1

T
(j)
(i) S

TRjS̃.

Notice that the Qi’s are public.
On the other hand, if z1, . . . , zn ∈ K satisfy T T · (z1, . . . , zn)T = (y0, . . . , yn−1)

T , then
it can be seen that

z1Q1 + · · ·+ znQn = ST

(
n∑
j=1

yj−1Rj

)
S̃ = ST∆TA∆̃S̃, (5.4)

which is a linear combination of the Qi’s of rank at most r + 1.

Step 2: Recovering T

From the previous step we know that there exists a linear combination of the public
matrices Qi’s of rank at most r + 1. Using the KS modeling [KS99], we can compute at
least one of these combinations. Assume that we get exactly the combination shown in
(5.4), then we know that T T · (z1, . . . , zn)T = (y0, . . . , yn−1)

T and therefore for each row
j of T T we have the following equation

T
(j)
(1) z1 + · · ·+ T

(j)
(n)zn = yj−1.

81

CHAPTER 5. NEW ALTERNATIVES USING CUBIC POLYNOMIALS

By iteratively raising this equation to the qth power and recalling that the entries of T
lie on F, we get the following n linear equations

T
(j)
(1) z1 + · · ·+ T

(j)
(n)zn = yj−1

T
(j)
(1) z

q
1 + · · ·+ T

(j)
(n)z

q
n = yq(j−1)

...
...

T
(j)
(1) z

qn−1

1 + · · ·+ T
(j)
(n)z

qn−1

n = yq
n−1(j−1)

that we can use to efficiently find the j-th column of T . We proceed in a similar fashion
to obtain T itself.

Step 3: Recovering S and H

From (5.4), assuming again that we get exactly this combination, we have knowledge
of the matrix (∆S)TA∆̃S̃. We will use this matrix to recover S.

Let M denote the matrix ∆S, we will write the product ∆̃S̃ in terms of this matrix.
The entry in position (k, `), (s, t) of ∆̃S̃ is given by(

∆̃S̃
)(s,t)

(k,`)
=

n∑
i=1

n∑
j=1

(
∆T

(k)∆(`)

)(j)

(i)
·
(
ST(i)S(j)

)(t)

(s)
,

but considering that
(
ST(i)S(j)

)(t)

(s)
= S

(s)
(i) ·S

(t)
(j) and

(
∆T

(k)∆(`)

)(j)

(i)
= ∆

(i)
(k) ·∆

(j)
(`), we can write

this as(
∆̃S̃
)(s,t)

(k,`)
=

(
n∑
i=1

∆
(i)
(k) · S

(s)
(i)

)
·

(
n∑
j=1

∆
(j)
(`) · S

(t)
(j)

)
= (∆S)

(s)
(k) · (∆S)

(t)
(`) =

(
MT

(k)M(`)

)(t)

(s)
.

It makes sense then to denote ∆̃S̃ by M̃ , and the main observation is that it can be
computed once we get M .

Let R denote the (known) matrix (∆S)TA∆̃S̃ = MTAM̃ , hence AM̃ = WR where
W =

(
MT

)−1. Due to the fact that only the first r+ 1 rows of A are nonzero, the matrix
AM̃ shares this shape and therefore so does the matrix WR. This allows us to find
the rows W(j) with j > r + 1 as follows: for each of these rows consider the n2 linear
equations

W
(1)
(j)R

(s,t)
(1) + · · ·+W

(n)
(j) R

(s,t)
(n) =

(
AM̃

)(s,t)

(j)
= 0

from which we can obtain W(j).
On the other hand, since M = ∆S it can be seen that M has the shape

M =

v1 v2 · · · vn−1 vn

(v1)q
1

(v2)q
1 · · · (vn−1)q

1
(vn)q

1

(v1)q
2

(v2)q
2 · · · (vn−1)q

2
(vn)q

2

...
...

...
(v1)q

n−1
(v2)q

n−1 · · · (vn−1)q
n−1

(vn)q
n−1

82

5.1. Multivariate Noisy Encryption Scheme

and therefore it suffices to find its first row to find M itself. Since WMT = Id and given
that we know the last n − (D + 1) rows W , we get enough weight 1 equations on the
vi’s (that can be turned into linear equations by raising to adequate q-th powers) that
should allow us to find M .

Once we get M , we compute M̃ and recover A by computing A =
(
MT

)−1
R
(
M̃
)−1

.

S can be recovered as S = ∆−1M .
Clearly, by knowing S, T and the public trapdoor function one can recover H.

Remarks about the Attack

This attack has been developed only in theory and it has not been implemented yet.
There are some concerns to be considered

• As we saw in equation (5.3), one of the possible n × n2 matrices representing H
has low rank of at most r+1. However, unlike the quadratic case, we do not know
yet if any other representation of the same form will have the same rank (this is
not substantial for the attack though, since we only need a low rank combination
to exist, and this shows existence).

• One can show that for any solution (z1, . . . , zn) to the MinRank problem in (5.4),
we get n − 1 solutions corresponding to the Frobenius powers (zq

i

1 , . . . , z
qi

n) for
i = 0, . . . , n− 1. MinRank attack on HFE and ZHFE only assume that one of these
solutions is found, while here we use the fact that we find exactly

(zq
i

1 , . . . , z
qi

n) =
(
y0, . . . , yn−1

)
T−1.

The main issue with this assumption is that an attacker does not know a priori
whether or not he got the right scalars, however, we expect our attack to be effi-
cient enough so that it can be run using all solutions to the MinRank problem, our
experiments show that we only get n of these (corresponding to the n Frobenius
powers of the solution described in the attack).

• We do not know yet the viability of finding S at the end of the attack. In any
case, at that point we have already recovered T , which imposes a vulnerability.
Moreover, the fact that a low rank linear combination exists makes the trapdoor
function distinguishable from random, which an issue from the security point of
view (for instance, we can not ensue that its behavior against Groebner bases and
other attacks are like that for random systems).

• Suppose in the worst case that an attacker is able to recover S, T and H. Since he
has knowledge of F , he will be able to find G and the Mj ’s from equation (5.1),
therefore inverting the trapdoor function. An alternative to avoid this consequence
is to hide F using a different transformation T ′. We do not know yet the level of
security of this approach.

83

CHAPTER 5. NEW ALTERNATIVES USING CUBIC POLYNOMIALS

5.2 “Non-noisy” Version

Due to this attack, a reformulation that allowed r to be larger became necessary. We
now present a variant of the first idea that allows r to be as big as we want (we take it
as n−1). Unfortunately, this variant can be broken with a direct algebraic attack, which
we describe in full detail.

5.2.1 Description

The idea here is to consider exactly the same construction than the previous approach,
but fixing G(X) to be the zero polynomial (that is, removing the noise). More pre-
cisely, pick completely at random a weight 2 polynomial F ∈ K[X] and for each
j = 0, . . . , n − 1, a weight 1 polynomial Mj ∈ K[X]. Naturally, choose two invertible
linear transformations S, T : Fn → Fn. Finally, we consider the weight 3 polynomial
H : K→ K given by

H(X) =
n−1∑
j=0

XqjMj (F ′(X)) (5.5)

where F ′ = F ◦ φ−1 ◦ S−1 ◦ φ. The trapdoor function is then P : Fn → F2n given by

P = (φ ◦ F ◦ φ−1, T ◦ φ ◦ H ◦ φ−1 ◦ S),

while the secret information is (F ,Mi,H, S, T).
One can easily see that we can not invert P as we did before since the resulting poly-

nomial will have high degree, the approach here is a bit different. Given c = (c1, . . . , c2n)
in the range of P , we want to solve the simultaneous equations F (φ−1(x)) = Z1 and
H (φ−1(Sx)) = Z2 where Z1 = φ−1(c1, . . . , cn) and Z2 = φ−1 ◦ T−1(cn+1, . . . , c2n). This is
the same as F ′ (φ−1(Sx)) = Z1 and H (φ−1(Sx)) = Z2, and any solution to this system
will also satisfy

Z2 = L
(
φ−1(Sx)

)
where L(X) =

∑n−1
j=0 X

qjMj (Z1). Since L has weight 1 and using theorem 4.2.1, by
applying ψ to both sides of the previous expression this is the same as solving the linear
system over F given by

φ(Z2) = φ
(
L
(
φ−1(Sx)

))
.

5.2.2 Security analysis

The first thing we must notice is that the MinRank attack presented before will not work
with this scheme. This is basically due to the fact that the matrices representing H this
time have a large rank, as D can be as large as we want. However, this second approach
is susceptible to a Direct Algebraic Attack.

More precisely, if (f1, . . . , fn, h1, . . . , hn) is a trapdoor function constructed as in the
previous section and if (c1, . . . , c2n) is in the range of this function, then the polynomial
system (f1−c1, . . . , fn−cn, h1−cn+1, . . . , hn−c2n) has a fixed falling degree independent
of n (which is not a natural behavior with random systems). Moreover, this falling

84

5.2. “Non-noisy” Version

degree is low enough for this system to be efficiently solved. We focus our efforts in
showing why is this the case.

Correspondence of polynomials (theorem 4.2.1) shows that the concept of weight on
K[X] is analogous to the degree in F[x1, . . . , xn]. By imposing the relation Xqn−1

= X,
in analogy to section 3.6 it is natural to make the following definition.

Definition. A degree fall in degree d of a tuple (F1, . . . ,Fm) of weight 2 polynomials in
K[X] is a tuple (H1, . . . ,Hm) ∈ (K[X]d−2)m such that H1F1 + · · · +HmFm has a weight
strictly smaller than d.

We can define trivial degree falls for polynomials in K[X] in a completely analogous
way as trivial degree falls were defined in section 3.6. It is natural to regard the falling
degree of (F1, . . . ,Fm) as the smallest d such that a non-trivial degree fall of F1, . . . ,Fm
exists in degree d. As in section 3.6, these ideas extend naturally to non-quadratic
polynomials.

The importance of extending this concept to polynomials in K[X] is that the falling
degree is preserved under the correspondence of polynomials, according to the follow-
ing proposition.

Proposition 5.2.1. Non-trivial degree falls on P ,Q ∈ K[X] are in correspondence with
non-trivial degree falls on (φ ◦ P ◦ φ−1, φ ◦ Q ◦ φ−1)

This important property can be found in [DG10] as property 5. We now show that
our polynomials F ′(X) and H(X) have a low falling degree.

Theorem 5.2.2. Let (Y0, Y1) ∈ G(K) where G(X) = (F ′(X),H(X)), then (F ′(X) −
Y0,H(X)− Y1) has a degree fall at degree 3

Proof. Let Ψ(X) :=
∑
XqjMj (Y0), then according to equation (5.5) for all X with

F(X) = Y0 it holds that H(X) = Ψ(X), hence F(X) − Y0 divides H(X) − Ψ(X) and
therefore there exists P(X) ∈ K[X] such that H(X) − Ψ(X) = P(X) (F(X)− Y0) . It
follows that

(H(X)− Y1)− P(X) (F(X)− Y0) = Ψ(X)− Y1.

Of course, this degree fall is not expected to be trivial. Since the falling degree
remains unchanged under linear changes of variables and F = F ′ ◦ φ−1 ◦ S ◦ φ, the
previous results show that the falling degree of the system

P = (φ ◦ F ◦ φ−1, T ◦ φ ◦ H ◦ φ−1 ◦ S)

(subtracting the corresponding ciphertext) is at most 3, moreover, equality is expected,
and it is the case according to our experiments in the appendix. In particular, the falling
degree does not grow with n as expected from theorem 3.2.2. This imposes a weakness
by itself on the cryptosystem since its security does not grow along with n.

Moreover, 3 is a very low falling degree that allows an attacker to invert the public
key directly. In section 6.4.2 in the appendix we can find the experimental evidence
that this attack is completely efficient.

85

CHAPTER 5. NEW ALTERNATIVES USING CUBIC POLYNOMIALS

5.3 Two-Layer Construction

To overcome this issue we present here an alternative that, expectedly, can raise the
falling degree according to a predefined parameter d. The idea is inspired in the ABC
Cryptosystem developed by Jintai Ding [Din12].

5.3.1 Description

Let n be a square number, say n = s2, consider a trapdoor function

(φ ◦ F ◦ φ−1, T ◦ φ ◦ H ◦ φ−1 ◦ S)

built as in the previous section and let f = (f1, . . . , fn) = φ ◦ F ◦ φ−1. Choose 2n linear
transformations A1, . . . , An, C1 . . . , Cn : Fn → F uniformly at random and consider the
matrices A,C ∈Ms×s(R) given by

A =

A1(f) A2(f) · · · As(f)
As+1(f) As+2(f) · · · A2s(f)

...
...

An−s+1(f) An−s+2(f) · · · An(f)

 ,

C =

C1(f) C2(f) · · · Cs(f)
Cs+1(f) Cs+2(f) · · · C2s(f)

...
...

Cn−s+1(f) Cn−s+2(f) · · · Cn(f)

 .
On the other hand, choose b1, . . . , bn ∈ R monomials of degree d and consider the

matrix B ∈Ms×s(R) given by

B =

b1 b2 · · · bs
bs+1 bs+2 · · · b2s

...
...

bn−s+1 bn−s+2 · · · bn

 .
Finally, construct the matrices E1, E2 ∈ Ms×s(R) given by E1 = BC and E2 = AB.

Note that each entry f of E1 or E2 is a polynomial of degree d + 2, but it is very sparse
(few monomials are required to represent it) due to the following: f has the form
f =

∑s
i=1 f̃i ·mi where each f̃i is quadratic and each mi is one of the n monomials of

degree d in B. Since there are O(n2) monomials of degree 2, there are O(n3) monomials
of the form xα · bi, where |α| = 2 and the bi’s are the monomials from B; these are the
monomials needed to represent each entry of E1 and E2.

Finally, we consider the trapdoor function as

P =
(
E1, E2, T ◦ φ ◦ H ◦ φ−1 ◦ S

)
,

where E1 and E2 are not understood as matrices but rather the n polynomials that
constitute them.

86

5.3. Two-Layer Construction

To invert the trapdoor function, suppose that we are given Y1 = E1(a), Y2 = E2(a)
and Y3 = T ◦ φ ◦ H ◦ φ−1 ◦ S(a) (where Ei(a) is the matrix of all entries of Ei evaluated
at a), we derive f(a) from Y1, Y2 as follows.

Recall that E1 = BC and E2 = AB, hence AE1 = E2C = ABC and after evaluation
we have that

A(a) · Y1 = Y2 · C(a). (5.6)
Let yi denote the unknown value fi(a), then, if y = (y1, . . . , yn), what we have is that

A1(y) A2(y) · · · As(y)
As+1(y) As+2(y) · · · A2s(y)

...
...

. . .
...

An−s+1(y) An−s+2(y) · · · An(y)

 · Y1 = Y2 ·

C1(y) C2(y) · · · Cs(y)
Cs+1(y) Cs+2(y) · · · C2s(y)

...
...

. . .
...

Cn−s+1(y) Cn−s+2(y) · · · Cn(y)

Since Y1, Y2 are known, this yields n linear equations in the variables y1, . . . , yn which

we can solve, hence obtaining the values f1(a), . . . , fn(a). At this point, we can obtain
a just like we did in section 5.2.1.

We call this construction Two-Layer since it consists of two stages, being the first one
the proposal on section 5.2 and the second the construction we have just seen in this
section.

5.3.2 Security Analysis

Direct Algebraic Attack

It is not difficult to see from equation (5.6) that (E1 − Y1, E2 − Y2) has a falling degree
of at least d+ 2: we have that

A · (E1 − Y1)− (E2 − Y2) · C
= (A · E1 − E2 · C)− (A · Y1 − Y2 · C)

= A(x) · Y1 − Y2 · C(x), (5.7)

which, after performing matrix multiplication, translates into a degree fall in degree
d + 2. Now, since we have chosen d, we can make it grow along with n (for instance
d = O(n) or d = O(

√
n)) to increase the falling degree of our system asymptotically in

an artificial manner. What is expected is that the complexity of a direct algebraic attack
increases. Even though our experiments showed this to be true, we could not conclude
that the scheme is secure. In fact, a more “intelligent” algebraic attack can break the
scheme, as we now show.

Consider equation (5.7). It shows that there is a polynomial combination of E1 − Y1

and E2 − Y2 that yields the degree 2 polynomials in A(x) · Y1 − Y2 · C(x). Moreover,
the polynomials in A and C are quadratic so this combination can be found in degree
d + 2, this means that by running Lazard’s algorithm in two steps (which is possible
since the Macaulay matrices constructed involve linear and quadratic monomials only)
we will find the polynomials in A(x) · Y1 − Y2 · C(x) (these will be the resulting degree
2 polynomials after reduction). This by itself is not a problem since the polynomials are
quadratic so this system is difficult to solve by itself. The security issue relies on the fact
that each of these polynomials is a linear combination of (f1, . . . , fn) and therefore, by

87

CHAPTER 5. NEW ALTERNATIVES USING CUBIC POLYNOMIALS

appending the block of the public key involving H and subtracting the corresponding
ciphertext we see that the resulting system has 3 as falling degree (due to the analysis
on the previous scheme and the invariance of the falling degree under linear transfor-
mations).

The importance of this scheme is that it shows that we must be careful when ana-
lyzing the security of a MPK Cryptosystem by means of its falling degree: it can be as
large as we wish but the complexity of the algebraic attack will remain constant. The
intuition is that we do not make the task of finding a Groebner basis harder by simply
raising the degree of the polynomials involved since the Macaulay matrices used only
require degree 2 monomials. This gives the suggestion that it is not the degree fall what
must be large, but the difference between the degree of the polynomials and the degree
fall (that is, the sizes of the Macaulay matrices that need to be constructed).

Other Attacks

Besides the algebraic attack, we contemplate the possibility of two attacks that can ap-
ply to this cryptosystem. The first one is the Linearization Equations Attack, considered
at first as an attack to the Matsumoto-Imai Cryptosystem [DGS06]. Secondly, we con-
sider what we call a Combinatorial attack, which attempts to exploit the sparsity of the
polynomials in the public key to recover the polynomials from A and B.

Linearization Equations Attack. Consider equation (5.6), which holds for any
plaintext-ciphertext pair a, (Y1, Y2). If we treat the coefficients of the quadratic poly-
nomials in A and C as variables, each time we have a valid plaintext-ciphertext pair
we have a linear equation on these variables arising from equation (5.6). Since we
have 2n×O(n2) = O(n3) of these variables, having knowledge of O(n3) valid plaintext-
ciphertext pairs will gives us enough equations to find the values of these variables and
therefore finding A and C. Once in this position one can find preimages of ciphertexts
by performing an algebraic attack identical to that on section 5.2.2.

To avoid this issue, we propose to compose E1 and E2 with a secret linear transfor-
mation T ′ : F2n → F2n, which hides the matrix multiplicative structure and still allows
the legitimate user to obtain Y1 and Y2.

Combinatorial Attack. In order to keep the sizes of both public and secret key as low
as possible, we propose to make B public and fixed, however, doing so implies that we
have to choose carefully which monomials to use.

Recall that the polynomials from BC and AB are part of the public key, it may be
the case that some information about the polynomials f1, . . . , fn can be obtained from
them. For instance, if the parameter d is at least 3 and we let each entry bi of the matrix
B be equal to xdi , then we can factor out each xdi on the polynomials from E1 and E2 to
obtain the polynomials in A and C, which of course would lead to a security issue. This
can be regarded as a combinatorial problem, where the objective is to use the structure
of the monomials in B along with E1 and E2 to obtain secret information.

To avoid this issue, we propose to use square-free monomials (monomials of the
form xi1 · · ·xid with is 6= it for s 6= t), which clearly complicates the combinatorial

88

5.3. Two-Layer Construction

problem. However, we have not studied in detail yet the feasibility of this attack, even
under this choice.

5.3.3 Importance of using both Layers

Recall that in this construction the first layer is the Second Attempt described in section
5.2. We saw there that it was not secure to use this directly as a trapdoor function since it
possesses a low Falling Degree and therefore it is easy to invert. The second layer takes
the first part of this construction: (f1, . . . , fn), and obtain some polynomials (E1, E2)
having a high Falling Degree that allow us to recover the evaluations f1(a), . . . , fn(a)
from E1(a), E2(a). We notice here that this construction is completely independent
from (f1, . . . , fn).

One may ask at this point why not simply choosing fi(x) = xi (which are linear)
so that we can recover a from E1(a), E2(a). By doing this the second layer would
be itself a trapdoor function and it makes no sense to use both layers. Unfortunately
(or fortunately for this work), extensive experiments we ran show that even though
the Falling Degree is high (as expected according to our previous discussion), a Direct
Algebraic Attack is completely efficient. We still do not know why is this the case,
and why is not the Falling Degree saying anything about the complexity of Lazard’s
algorithm, but we conjecture that this is due to the fact that the fi’s are linear. We stress
that experiments show that this is not an issue if the fi’s are quadratic, which is the case
in our Two-Layer construction.

89

Chapter 6

Appendix

6.1 Preliminaries

6.1.1 Finite Fields and Field Extensions

We begin by considering prime fields. Consider n a natural number and let Zn denote
the ring of integers modulo n. It is well known that this set is a field when n is a prime
p, and in this case we denote Zp by Fp (or GL(p), making reference to Galois field of
order p). These fields are known as Prime Fields.

A Finite Field is simply a field with a finite number of elements. In the following we
describe with certain detail how finite fields look like.

Given any field F, we say that a field K is a field extension of F if K ⊇ F. If K is
a field extension of F then K is naturally a F−vector space with scalar multiplication
given by field multiplication, in this case, the dimension of K as a F−vector space is
known as the degree of the extension. Given this, if K is a field extension of F of degree
n, we have a F-vector spaces isomorphism

φ : K→ Fn, (6.1)

in particular, if s <∞ is the size of the field F, then K has sn elements.
On the other hand, if F is a finite field it is well known that its characteristic (the

smallest c ∈ N such that c · 1 = 0) must be a prime number q, hence, the field Fq =
{1, 2 · 1, . . . , (q − 1) · 1} is contained in F and in particular F is an extension field of Fq.
Due to our previous observations, we conclude that the number of elements in F is qn

where q is the characteristic of F and n is the dimension of F as a Fq−vector space.
So far we have seen that the number of elements in every finite field is a prime

power. During the rest of this work we will only be concerned with finite fields.

Field Extensions

We now study field extensions with more detail. Let F be a finite field, a polynomial
g(y) ∈ F[y] is said to be irreducible if it can not be factored into the product of two non-
constant polynomials. An interesting fact is that, if g(y) is an irreducible polynomial of
degree n, the quotient ring F/〈g(y)〉 constitutes a field K which is a field extension of F

CHAPTER 6. APPENDIX

of degree n (identifying a ∈ F with a + 〈g(y)〉 ∈ K), and even more interesting is the
fact that all field extensions have this form (quotient of F by a irreducible polynomial).
If g(y) = yn + an−1y

n−1 + · · · + a1y
1 + a0, since g(y) = 0 in K we can regard elements

of this field as polynomials in the variable y having degree at most n − 1, reducing yn

according to the rule yn = −an−1y
n−1 − · · · − a1y

1 − a0.
Due to this fact, if K is an extension of F of this type we can take the isomorphism

in equation (6.1) to be

b0 + b1y
1 + · · ·+ bn−1y

n−1 ∈ K 7−→ (b0, b1, . . . , bn−1) ∈ Fn

A very important fact is that any field extension K of F has the form mentioned
before , so the expression above is the isomorphism φ between K and Fn for any field
extension of degree n of a finite field F.

6.1.2 Frobenius Powers

Let K be a field extension of F, where F is a finite field of characteristic q. Recall that
every finite group with t elements satisfy xt = e for all x in the group, where e is the
identity of such. If F is a field, then every nonzero element of F admits a multiplicative
inverse and therefore F∗ := F \ {0} is a multiplicative group with identity 1. Since every
finite field has qn elements where q is its characteristic, we conclude that xqn−1 = 1 for
all x ∈ F∗, and therefore xqn = x for all x ∈ F. In particular, xq = x for all x ∈ Fq (these
are the so-called Field Equations).

Recall that F is a field extension of Fq and therefore a Fq-vector space, the following
is a very important proposition.

Proposition 6.1.1. The function F → F defined by x 7→ xq is a Fq-linear transformation,
that is, (ax+ z)q = axq + zq for all a ∈ Fq, x, z ∈ F.

This linear transformation is known as a Frobenius Transformation, and its impor-
tance will become clearer in the next few sections.

Linear Combinations of Frobenius Powers

Consider a field extension K of F of degree n. So far we have seen that every element
in α ∈ K can be written as α = b0 + b1y

1 + · · · + bn−1y
n−1, and this defines the bijective

F-linear transformation

φ : K −→ Fn

b0 + b1y
1 + · · ·+ bn−1y

n−1 7−→ (b0, b1, . . . , bn−1).

We know that the Frobenius transformation X 7→ Xq for X ∈ K is a F-linear trans-
formation and therefore so is every polynomial of the form

F(X) =
n−1∑
i=0

αiX
qi (6.2)

92

6.2. Correspondence of Polynomials

implying that the composition φ ◦ F ◦ φ−1 : Fn → Fn is F-linear as well, that is, it is
given by n polynomials, each one homogeneous of degree 1. On the other hand, one
can show that if F : Fn → Fn is a linear transformation, then F(X) = φ−1 ◦ F ◦ φ(X)
has the shape above.

In fact, let α = b0 + b1y
1 + · · ·+ bn−1y

n−1 ∈ K, then for each i = 0, . . . , n− 1 it is clear
that αqi = b0 + b1 (y1)

qi
+ · · ·+ bn−1 (yn−1)

qi (since bqi = bi), and therefore
α
αq

αq
2

...
αq

n−1

 =

y0 y1 · · · yn−2 yn−1

(y0)q
1

(y1)q
1 · · · (yn−2)q

1
(yn−1)q

1

(y0)q
2

(y1)q
2 · · · (yn−2)q

2
(yn−1)q

2

...
...

...
(y0)q

n−1
(y1)q

n−1 · · · (yn−2)q
n−1

(yn−1)q
n−1

b0

b1

b2
...

bn−1

 .

Since φ(α) = [b0, b1, . . . , bn−1]T , we have that

~α = ∆ · φ(α) (6.3)

where ~α is the vector [α, αq, αq
2
, . . . , αq

n−1
]T and ∆ is the matrix involving y’s above. It

is easy to see that ∆ is invertible [LN97] and therefore ∆−1 · ~α = φ(α). If M ∈Mn×n(F)
is the matrix representing the linear transformation F , then F ◦ φ(α) = M ·∆−1 · ~α and
therefore φ−1 ◦ F ◦ φ(α) is the dot product between the vectors [y0, y1, . . . , yn−1]T and
M ·∆−1 · ~α, which clearly has the shape in equation (6.2).

We will generalize this result in the following.

6.2 Correspondence of Polynomials

Given a nonzero natural number b, any other nonzero natural number a can be written
uniquely as a = c1b

0 +c2b
1 + · · ·+c`b

`−1 where 0 ≤ ci < b for all i. We say that (c1, . . . , c`)
is the expansion of a in base b, and we refer to d =

∑`
i=1 ci as the b−Hamming weight

of a. In order to extend the definition we define the b−Hamming weight of a = 0 to be
0. To illustrate the concept, a has q−Hamming weight 2 if and only if it has the form
a = qi + qj.

Definition. The weight of a monomial Xa ∈ K[X] is the q−Hamming weight of a. A
polynomial F(X) ∈ K[X] is said to be homogeneous of weight d if all of its monomials
have weight d, and it is said to have weight d if all of its monomials have weight at most
d.

We aim to prove the following theorem, which will be the heart of what we will
develop next. Recall our notation R := F[x1, . . . , xn].

Theorem 6.2.1. (Correspondence of Polynomials). Let d ≥ 0 be an integer, let K[X]d
denote the set of homogeneous polynomials in K[X] of weight d and let (Rd)

n = Rn
d denote

the set of all functions F : Fn → Fn where each coordinate is a homogeneous polynomial

93

CHAPTER 6. APPENDIX

in F[x1, . . . , xn] of degree d, these sets are naturally F-vector spaces. The following is a
well-defined bijective linear transformation

Drp: K[X]d −→ Rn
d

F 7−→ φ ◦ F ◦ φ−1.

whose inverse is

Lft : Rn
d −→ K[X]d

F 7−→ φ−1 ◦ F ◦ φ.

Before we get into the proof of this theorem, we will need the following lemmas.

Lemma 6.2.2. Let K = F[y]/〈g(y)〉 where g(y) = yn + an−1y
n−1 + · · · + a1y

1 + a0 is an
irreducible polynomial over F. Let

C =

0 0 · · · 0 −a0

1 0 · · · 0 −a1

0 1 · · · 0 −a2
...

...
...

0 0 · · · 1 −an−1

 ,

then for any α ∈ K we have that φ (αyj) = Cj · φ(α).

Proof. It suffices to show the result for j = 1 since the general case follows from an
iteration of this case. Let α = b0 + b1y

1 + · · ·+ bn−1y
n−1 ∈ K, then

α · y = b0y + b1y
2 + · · ·+ bn−2y

n−1 + bn−1y
n

= b0y + b1y
2 + · · ·+ bn−2y

n−1 + bn−1(−an−1y
n−1 − · · · − a1y

1 − a0)

= −a0bn−1 + (b0 − bn−1a1)y1 + · · ·+ (bn−2 − bn−1an−1)yn−1

hence φ(α ·y) = [−a0bn−1, b0−bn−1a1, . . . , bn−2−bn−1an−1]T , which is the same as C ·φ(α)
since φ(α) = [b0, b1, . . . , bn−1]T .

Lemma 6.2.3. Let Q(X),F(X) ∈ K[X] where F has the shape in equation (6.2). We
already know that in this case φ ◦F ◦φ−1 is given by n homogeneous degree 1 polynomials
p1, . . . , pn ∈ R. Then, for all X ∈ K we have that

φ (F(X) · Q(X)) =
n∑
i=1

pi (φ(X)) · Ci−1 · φ (Q(X))

Proof. Let x = φ(X), hence

F(X) = F
(
φ−1(x)

)
= φ−1

(
φ ◦ F ◦ φ−1(x)

)
= φ−1

(
[p1(x), p2(x), . . . , pn(x)]T

)
= p1(x) + p2(x)y + · · ·+ pn(x)yn−1

94

6.2. Correspondence of Polynomials

and therefore, since pi(x) ∈ F, due to the previous lemma we have that

φ (F(X) · Q(X)) = φ
(
p1(x)Q(X) + p2(x)yQ(X) + · · ·+ pn(x)yn−1Q(X)

)
= p1(x)φ (Q(X)) + p2(x)φ (yQ(X)) + · · ·+ pn(x)φ

(
yn−1Q(X)

)
= p1(x)φ (Q(X)) + p2(x)CQ(X) + · · ·+ pn(x)Cn−1Q(X)

=
n∑
i=1

pi (φ(X)) · Ci−1 · φ (Q(X)) .

Proof of Theorem 6.2.1. We begin with the proof that this function is well defined by
proving that for every monomial F(X) = Xa ∈ K[X]d it holds that Drp (F) ∈ Rn

d .
Clearly, this is enough since lemma 6.2.2 ensures that this is true for terms αXa and
therefore it is true for any homogeneous polynomial of weight d since Drp is a composi-
tion operation so it is additively homomorphic. The claim is clear for d = 0 since in this
case a = 0 and therefore the polynomial F(X) = α is constant, as well as Drp(F) ∈ Rn

0 .
Let’s assume the claim holds for d and let’s prove it holds for d + 1 as well. Since a has
weight d+1 it can be written as a = b+qi where b has weight d so F(X) = Xa = XqiXb.
By lemma 6.2.3 with Q(X) = Xb we have that

φ (F(X)) = φ
(
XqiQ(X)

)
=

n∑
i=1

pi (φ(X)) · Ci−1 · φ (Q(X))

where each pi is a homogeneous degree 1 polynomial, therefore

Drp (F) (x) = φ ◦
(
F
(
φ−1(x)

))
=

n∑
i=1

pi
(
φ
(
φ−1(x)

))
· Ci−1 · φ

(
Q
(
φ−1(x)

))
=

n∑
i=1

pi
(
φ
(
φ−1(x)

))
· Ci−1 · φ

(
Q
(
φ−1(x)

))
=

n∑
i=1

pi (x) · Ci−1 ·Drp (Q) (x),

but using the induction hypothesis we see that Drp (Q) (x) is a vector with n homoge-
neous polynomials of degree d, so Drp (F) (x) is a vector with n homogeneous polyno-
mials of degree d+ 1.

Proving that Drp is bijective is not a problem now. Let F ∈ Rn
d , then F = φ−1 ◦F ◦ φ

is a polynomial in K[X] (every function K→ K is a polynomial function), which we can
write as

F =
d′∑
`=0

F`

where each F` ∈ K[X] is homogeneous of weight `. Due to what we have proved,
Drp (F`) ∈ Rn

` for each `, since

F = Drp (F) =
d′∑
`=0

Drp (F`)

and F ∈ Rn
d , we conclude that F` = 0 for all ` 6= d and F = Fd ∈ K[X]d. This shows

that F 7→ φ−1 ◦ F ◦ φ is the inverse of Drp.

95

CHAPTER 6. APPENDIX

6.3 Computation of Liftings and Droppings in the
Quadratic Case

For computational purposes it will be useful to have a more direct way for computing
Drp (F) from F and Drp−1(F) from F in the quadratic case. This is well known due to
its applications in MPKC, and we dedicate this section to this matter.

Representation of Quadratic and Linear Forms

Let p(x1, . . . , xn) ∈ R be a quadratic polynomial, then p has the form

p(x1, . . . , xn) =
n∑

i,j=1

aijxixj +
n∑
i=1

bixi + c

and therefore can be written as

p(x1, . . . , xn) = xTAx +Bx + c

where x = [x1, . . . , xn]T , A ∈ Mn×n(F) is the matrix [aij]ij and B ∈ M1×n(F) is the
matrix [bi]1i.

It is interesting that we can have the same sort of representation with polynomials
in K[X] having weight at most 2. These have the shape

F(X) =
n∑

i,j=1

αijX
qi−1+qj−1

+
n∑
i=1

βiX
qi−1

+ γ

and therefore can be written as

F(X) = XTMX +NX + γ

where X = [Xq0 , . . . , Xqn−1
]T , M ∈ Mn×n(K) is the matrix [αij]ij and N ∈ M1×n(K) is

the matrix [βi]1i.
For the following we need to recall the invertible matrix

∆ =

y0 y1 · · · yn−2 yn−1

(y0)q
1

(y1)q
1 · · · (yn−2)q

1
(yn−1)q

1

(y0)q
2

(y1)q
2 · · · (yn−2)q

2
(yn−1)q

2

...
...

...
(y0)q

n−1
(y1)q

n−1 · · · (yn−2)q
n−1

(yn−1)q
n−1

which satisfies

X = ∆ · φ(X)

96

6.3. Computation of Liftings and Droppings in the Quadratic Case

Computation of Drp (F) from F

Let F(X) ∈ K[X] be a polynomial with weight at most 2 given by

F(X) = XTMX +NX + γ,

we will find an explicit description of the dropping Drp (F) in terms of the matrices M
and N . If x = φ(X), we have that

F
(
φ−1(x)

)
= F(X) = XTMX +NX + γ

= (∆ · φ(X))T M (∆ · φ(X)) +N (∆ · φ(X)) + γ = xT∆TM∆x +N∆x + γ.

By factoring each yi from the matrices ∆TM∆ and N∆, we can write

∆TM∆ =
n∑
i=1

yi−1Ai

and

N∆ =
n∑
i=1

yi−1Bi

where Ai ∈Mn×n(F) and Bi ∈M1×n(F), and therefore, if γ = c1 + c2y + · · ·+ cny
n−1

F ◦ φ−1(x) = xT

(
n∑
i=1

yi−1Ai

)
x +

(
n∑
i=1

yi−1Bi

)
x +

n∑
i=1

ciy
i−1

=
n∑
i=1

yi−1
(
xTAix +Bix + ci

)
.

Since for all i and particular x1, . . . , xn ∈ F we have that xTAix + Bix + ci ∈ F, we
conclude by the definition of φ that

Drp (F) (x) = φ ◦ F ◦ φ−1(x) =
[
xTA1x +B1x + c1, . . . ,x

TAnx +Bnx + cn
]T

Computation of Lft(F) from F

Let F : Fn → Fn given by n quadratic polynomials p1, . . . , pn ∈ R, where each polyno-
mial is written as

p(x1, . . . , xn) = xTAix +Bix + ci

where Ai ∈Mn×n(F) and Bi ∈M1×n(F). We define γ = c1 + c2y+ · · ·+ cny
n−1 ∈ K and

the matrices M ∈Mn×n(K), N ∈M1×n(K) as

M =
(
∆T
)−1

(
n∑
i=1

yi−1Ai

)
∆−1

and

N =

(
n∑
i=1

yi−1Bi

)
∆−1,

by reverting the steps in the previous section we can see that Lft(F) is given by

Lft (F) (X) = φ−1 ◦ F ◦ φ(X) = XTMX +NX + γ

97

CHAPTER 6. APPENDIX

6.4 Experimental Data

This section presents all experimental data cited in this work. Computations were done
using software Magma V2.21-1 [BCP97] on a server with a eight core Intel(R) Xeon(R)
CPU E5-2609 running each at 2.40GHz.

6.4.1 Groebner Bases Computation

The following table resumes several experiments for computation of Groebner bases
using homogeneous Lazard’s algorithm. For this matter, m quadratic homogeneous
polynomials f1, . . . , fm are chosen at random

q dim(I) ireg(I) MaxDeg(I)MB q dim(I) ireg(I) MaxDeg(I)MB
2 1 10 10 11 5 0 11 11 11
2 1 10 10 11 5 0 11 11 11
2 1 10 10 11 5 0 11 11 11
2 1 10 10 11 5 1 10 10 11
2 0 11 11 11 5 1 10 10 11
2 1 10 10 11 5 0 11 11 11
2 1 10 10 11 5 0 11 11 11
2 1 10 10 11 5 0 11 11 11
2 0 11 10 11 5 0 11 11 11
2 0 11 11 11 5 0 11 10 11
2 0 11 11 11 5 1 10 10 11
2 0 11 10 11 5 1 10 10 11
2 1 10 10 11 5 0 11 11 11
2 1 10 10 11 5 0 11 10 11
2 1 10 10 11 5 0 11 10 11
2 0 11 10 11 5 0 11 11 11
2 1 10 10 11 5 0 11 11 11
2 0 11 11 11 5 0 11 11 11
2 1 10 10 11 5 0 11 11 11
2 0 11 10 11 5 0 11 11 11

Table 6.1: Experiments of Groebner bases computation, n = 10,m = 10

98

6.4. Experimental Data

q dim(I) ireg(I) MaxDeg(I)MB q dim(I) ireg(I) MaxDeg(I)MB
2 5 1 6 6 5 5 1 6 6
2 5 1 6 6 5 5 1 5 6
2 5 1 6 6 5 5 1 6 6
2 5 1 5 6 5 5 1 5 6
2 5 1 6 6 5 5 1 7 6
2 5 1 6 6 5 5 1 6 6
2 5 1 6 6 5 5 1 6 6
2 5 1 7 6 5 5 1 6 6
2 5 1 6 6 5 5 1 6 6
2 5 1 5 6 5 5 1 6 6
2 5 1 6 6 5 5 1 6 6
2 5 1 6 6 5 5 1 6 6
2 5 1 7 6 5 5 1 6 6
2 5 1 5 6 5 5 1 6 6
2 5 1 5 6 5 5 1 6 6
2 5 1 7 6 5 5 1 5 6
2 5 1 6 6 5 5 1 6 6
2 5 1 6 6 5 5 1 6 6
2 5 1 6 6 5 5 1 5 6
2 5 1 6 6 5 5 1 6 6

Table 6.2: Experiments of Groebner bases computation, n = 10,m = 5

q dim(I) ireg(I) MaxDeg(I)MB q dim(I) ireg(I) MaxDeg(I)MB
2 7 0 5 4 5 7 0 3 4
2 7 0 4 4 5 7 0 4 4
2 7 0 3 4 5 7 0 4 4
2 7 0 3 4 5 7 0 4 4
2 7 0 5 4 5 7 0 4 4
2 7 0 4 4 5 7 0 4 4
2 7 0 4 4 5 7 0 4 4
2 7 0 3 4 5 7 0 4 4
2 7 0 4 4 5 7 0 4 4
2 7 0 3 4 5 7 0 4 4
2 7 0 4 4 5 7 0 4 4
2 7 0 3 4 5 7 0 4 4
2 7 0 4 4 5 7 0 3 4
2 7 0 3 4 5 7 0 3 4
2 7 0 5 4 5 7 0 4 4
2 7 0 7 4 5 7 0 4 4
2 7 0 4 4 5 7 0 4 4
2 7 0 3 4 5 7 0 4 4
2 7 0 4 4 5 7 0 4 4
2 7 0 2 4 5 7 0 5 4

Table 6.3: Experiments of Groebner bases computation, n = 10,m = 3

99

CHAPTER 6. APPENDIX

q dim(I) ireg(I) MaxDeg(I)MB q dim(I) ireg(I) MaxDeg(I)MB
2 2 7 10 9 5 2 7 9 9
2 2 7 9 9 5 2 7 9 9
2 2 7 9 9 5 2 7 9 9
2 2 7 8 9 5 2 7 9 9
2 2 7 9 9 5 2 7 9 9
2 2 7 8 9 5 2 7 9 9
2 2 7 10 9 5 2 7 9 9
2 2 7 12 9 5 2 7 9 9
2 2 7 8 9 5 2 7 8 9
2 2 7 9 9 5 2 7 9 9
2 2 7 9 9 5 2 7 9 9
2 2 7 9 9 5 2 7 8 9
2 2 7 9 9 5 2 7 9 9
2 2 7 8 9 5 2 7 9 9
2 2 7 10 9 5 2 7 9 9
2 2 7 11 9 5 2 7 8 9
2 2 7 9 9 5 2 7 9 9
2 2 7 11 9 5 2 7 9 9
2 2 7 12 9 5 2 7 8 9
2 2 7 8 9 5 2 7 9 9

Table 6.4: Experiments of Groebner bases computation, n = 10,m = 8

q dim(I) ireg(I) MaxDeg(I)MB q dim(I) ireg(I) MaxDeg(I)MB
2 0 7 7 12 5 0 7 7 12
2 0 6 6 12 5 0 6 6 12
2 0 6 6 12 5 0 6 6 12
2 0 7 6 12 5 0 6 6 12
2 0 6 6 12 5 0 7 7 12
2 0 6 6 12 5 0 6 6 12
2 0 6 6 12 5 0 6 6 12
2 0 7 7 12 5 0 6 6 12
2 0 7 7 12 5 0 6 6 12
2 0 6 6 12 5 0 6 6 12
2 1 7 7 12 5 0 6 6 12
2 0 6 6 12 5 0 6 6 12
2 1 6 6 12 5 0 7 7 12
2 0 7 6 12 5 0 6 6 12
2 0 6 6 12 5 0 6 6 12
2 0 7 7 12 5 0 6 6 12
2 0 7 6 12 5 0 7 7 12
2 0 6 6 12 5 0 6 6 12
2 1 6 6 12 5 0 6 6 12
2 0 7 6 12 5 1 6 6 12

Table 6.5: Experiments of Groebner bases computation, n = 10,m = 9

100

6.4. Experimental Data

q dim(I) ireg(I) MaxDeg(I)MB q dim(I) ireg(I) MaxDeg(I)MB
2 0 4 4 21 5 0 4 4 21
2 0 4 4 21 5 0 4 4 21
2 0 4 4 21 5 0 4 4 21
2 0 4 4 21 5 0 4 4 21
2 0 4 4 21 5 0 4 4 21
2 0 4 4 21 5 0 4 4 21
2 0 4 4 21 5 0 4 4 21
2 0 4 4 21 5 0 4 4 21
2 0 4 4 21 5 0 4 4 21
2 0 4 4 21 5 0 4 4 21
2 0 4 4 21 5 0 4 4 21
2 0 4 4 21 5 0 4 4 21
2 0 4 4 21 5 0 4 4 21
2 0 4 4 21 5 0 4 4 21
2 0 4 4 21 5 0 4 4 21
2 0 4 4 21 5 0 4 4 21
2 0 4 4 21 5 0 4 4 21
2 0 4 4 21 5 0 4 4 21
2 0 4 4 21 5 0 4 4 21
2 0 4 4 21 5 0 4 4 21

Table 6.6: Experiments of Groebner bases computation, n = 10,m = 20

101

CHAPTER 6. APPENDIX

6.4.2 New Alternatives

Multivariate Noisy Encryption Scheme

q n r
Plaintext space

size ≈ Degree of G(X)
Public key

generation [s] Encryption [s] Decryption [s]

2 50 5 250 96 3.424 0.024 0.019
2 50 6 250 192 3.804 0.024 0.038
2 50 7 250 384 4.194 0.026 0.107
2 50 8 250 768 4.640 0.027 0.254
2 50 9 250 1536 5.387 0.026 0.629
2 50 10 250 3072 5.480 0.028 2.847
2 100 3 2100 24 27.110 0.131 0.017
2 100 4 2100 48 30.757 0.132 0.034
2 100 5 2100 96 34.153 0.132 0.081
2 150 3 2150 24 124.268 0.402 0.038
2 150 4 2150 48 135.726 0.392 0.070
2 150 5 2150 96 142.668 0.398 0.144
3 31 3 250 81 1.114 0.030 0.074
3 31 4 250 243 1.340 0.032 0.384
3 31 5 250 729 1.293 0.032 2.078
3 31 6 250 2187 1.453 0.032 7.214
3 63 2 2100 27 10.274 0.238 0.034
3 63 3 2100 81 11.650 0.238 0.168
3 63 4 2100 243 12.788 0.236 0.834
3 63 5 2100 729 14.080 0.240 4.516
3 94 2 2150 27 65.796 1.838 0.128
3 94 3 2150 81 73.036 1.836 0.542
3 94 4 2150 243 79.340 1.834 2.886
5 21 2 250 75 0.254 0.006 0.026
5 21 3 250 375 0.358 0.006 0.288
5 21 4 250 1875 0.370 0.004 3.812
5 43 2 2100 75 4.588 0.070 0.436
5 43 3 2100 375 5.305 0.068 3.852
5 43 4 2100 1875 6.000 0.070 28.940
5 64 2 2150 75 8.236 0.356 0.248
5 64 3 2150 375 10.010 0.354 3.068
5 64 4 2150 1875 11.735 0.352 37.242
7 17 2 250 147 0.162 0.004 0.132
7 17 3 250 1029 0.200 0.004 1.844
7 17 4 250 7203 0.200 0.005 19.275
7 35 2 2100 147 1.155 0.040 0.225
7 35 3 2100 1029 1.370 0.040 4.850
7 35 4 2100 7203 1.605 0.035 50.460
7 53 2 2150 147 11.675 0.135 1.760
7 53 3 2150 1029 13.230 0.140 22.545

11 14 2 250 363 0.090 0.010 0.415
11 14 3 250 3993 0.085 0.005 7.440
11 29 2 2100 363 1.125 0.025 1.460
11 29 3 2100 3993 1.325 0.025 29.570
11 43 2 2150 363 5.635 0.080 3.665
11 43 3 2150 3993 6.550 0.080 81.060
17 12 2 250 867 0.055 0.000 0.990
17 12 3 250 14739 0.040 0.005 27.680
17 24 2 2100 867 0.390 0.010 3.840
17 24 3 2100 14739 0.475 0.015 87.375
17 36 2 2150 867 1.875 0.075 10.375

Table 6.7: Experiments of Public Key generation, encryption and decryption, for different
values of q, n and D

102

6.4. Experimental Data

“Non-noisy” Version

q n Falling Degree Time of Algebraic
Attack [s]

3 30 3 0.800
3 30 3 0.820
3 30 3 0.800
3 45 3 6.880
3 45 3 6.580
3 45 3 7.000
3 60 3 8.230
3 60 3 8.260
3 60 3 8.300

Table 6.8: Algebraic attack for different values of q and n

103

Bibliography

[Bar04] M. Bardet. Étude des systèmes algébriques surdéterminés. Applications aux
codes correcteurs et à la cryptographie. PhD thesis, Université Paris 6, 2004.

[BBD08] Daniel J. Bernstein, Johannes Buchmann, and Erik Dahmen. Post-Quantum
Cryptography. Springer Publishing Company, Incorporated, 1st edition,
2008.

[BCE+16] John B. Baena, Daniel Cabarcas, Daniel E. Escudero, Jaiberth Porras-
Barrera, and Javier A. Verbel. Efficient ZHFE Key Generation, pages 213–232.
Springer International Publishing, Cham, 2016.

[BCP97] Wieb Bosma, John Cannon, and Catherine Playoust. The Magma algebra
system. I. The user language. J. Symbolic Comput., 24(3-4):235–265, 1997.
Computational algebra and number theory (London, 1993).

[BFP13] Luk Bettale, Jean-Charles Faugère, and Ludovic Perret. Cryptanalysis of
HFE, multi-HFE and variants for odd and even characteristic. Designs, Codes
and Cryptography, 69(1):1–52, 2013.

[Buc65] B. Buchberger. Ein Algorithmus zum Auffinden der Basiselemente des Restk-
lassenringes nach einem nulldimensionalen Polynomideal (An Algorithm for
Finding the Basis Elements in the Residue Class Ring Modulo a Zero Dimen-
sional Polynomial Ideal). PhD thesis, Mathematical Institute, University of
Innsbruck, Austria, 1965. English translation in J. of Symbolic Computation,
Special Issue on Logic, Mathematics, and Computer Science: Interactions.
Vol. 41, Number 3-4, Pages 475–511, 2006.

[Cab11] Daniel Cabarcas. Groebner Bases Computation and Mutant Polynomials. PhD
thesis, University of Cincinnati, 2011.

[CKM97] S. Collart, M. Kalkbrener, and D. Mall. Converting bases with the gröbner
walk. Journal of Symbolic Computation, 24(3):465 – 469, 1997.

[CLO07] David A. Cox, John Little, and Donal O’Shea. Ideals, Varieties, and Algo-
rithms: An Introduction to Computational Algebraic Geometry and Commuta-
tive Algebra, 3/e (Undergraduate Texts in Mathematics). Springer-Verlag New
York, Inc., Secaucus, NJ, USA, 2007.

[DG10] Vivien Dubois and Nicolas Gama. The Degree of Regularity of HFE Systems,
pages 557–576. Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.

BIBLIOGRAPHY

[DGS06] Jintai Ding, Jason E. Gower, and Dieter S. Schmidt. Multivariate public key
cryptosystems, volume 25 of Advances in Information Security. Springer, New
York, 2006.

[Din12] Jintai Ding. A simple provably secure key exchange scheme based on the
learning with errors problem. IACR Cryptology ePrint Archive, 2012:688,
2012.

[DS05] Jintai Ding and Dieter Schmidt. Rainbow, a new multivariable polynomial
signature scheme. In John Ioannidis, Angelos Keromytis, and Moti Yung,
editors, Applied Cryptography and Network Security, volume 3531 of Lec-
ture Notes in Computer Science, pages 164–175. Springer Berlin Heidelberg,
2005.

[DS13] Jintai Ding and Dieter Schmidt. Solving Degree and Degree of Regularity
for Polynomial Systems over a Finite Fields, pages 34–49. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2013.

[Fau99] Jean-Charles Faugère. A new efficient algorithm for computing Gröbner
bases (F4). J. Pure Appl. Algebra, 139(1-3):61–88, 1999. Effective methods
in algebraic geometry (Saint-Malo, 1998).

[Fau02] Jean-Charles Faugère. A new efficient algorithm for computing Gröbner
bases without reduction to zero (F5). In Proceedings of the 2002 interna-
tional symposium on Symbolic and algebraic computation, ISSAC ’02, pages
75–83, New York, NY, USA, 2002. ACM.

[FGLM93] J.C. Faugère, P. Gianni, D. Lazard, and T. Mora. Efficient computation of
zero-dimensional gröbner bases by change of ordering. Journal of Symbolic
Computation, 16(4):329 – 344, 1993.

[FJ03] Jean-Charles Faugère and Antoine Joux. Algebraic cryptanalysis of hidden
field equation (HFE) cryptosystems using Gröbner bases. In Advances in
cryptology—CRYPTO 2003, volume 2729 of Lecture Notes in Computer Sci-
ence, pages 44–60. Springer, Berlin, 2003.

[Frö97] Ralf Fröberg. An Introduction to Gröbner Bases. Wiley, 1 edition, 1997.

[GJ90] Michael R. Garey and David S. Johnson. Computers and Intractability; A
Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York,
NY, USA, 1990.

[GM86] Rüdiger Gebauer and H. Michael Möller. Buchberger’s algorithm and stag-
gered linear bases. In Proceedings of the Fifth ACM Symposium on Symbolic
and Algebraic Computation, SYMSAC ’86, pages 218–221, New York, NY,
USA, 1986. ACM.

[GM89] Patrizia M. Gianni and Teo Mora. Algebraic solution of systems of polyno-
mial equations using groebner bases. In Proceedings of the 5th International

106

Bibliography

Conference on Applied Algebra, Algebraic Algorithms and Error-Correcting
Codes, AAECC-5, pages 247–257, London, UK, UK, 1989. Springer-Verlag.

[KL07] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography
(Chapman & Hall/Crc Cryptography and Network Security Series). Chapman
& Hall/CRC, 2007.

[KS99] Aviad Kipnis and Adi Shamir. Cryptanalysis of the HFE public key cryp-
tosystem by relinearization. In Advances in cryptology—CRYPTO ’99 (Santa
Barbara, CA), volume 1666 of Lecture Notes in Computer Science, pages 19–
30. Springer, Berlin, 1999.

[Laz83] D. Lazard. Gröbner bases, Gaussian elimination and resolution of systems
of algebraic equations, pages 146–156. Springer Berlin Heidelberg, Berlin,
Heidelberg, 1983.

[LN97] Rudolf. Lidl and Harald Niederreiter. Finite fields / Rudolf Lidl, Harald Nieder-
reiter ; foreword by P.M. Cohn. Cambridge University Press Cambridge ; New
York, 2nd ed. edition, 1997.

[Mac02] F. S. MacAulay. Some formulæ in elimination. Proceedings of the London
Mathematical Society, s1-35(1):3–27, 1902.

[Mac94] F.S. Macaulay. The Algebraic theory of modular systems. Cambridge math-
ematical library. Cambridge University Press, Cambridge, New York, Mel-
bourne, 1994.

[MS04] Ezra Miller and Bernd Sturmfels. Combinatorial commutative algebra,
2004.

[Par10] Keith Pardue. Generic sequences of polynomials. Journal of Algebra,
324(4):579 – 590, 2010.

[Pat96] Jacques Patarin. Hidden Field Equations (HFE) and Isomorphisms of Poly-
nomials (IP): Two new families of asymmetric algorithms. In Ueli Mau-
rer, editor, Advances in Cryptology—EUROCRYPT 96, volume 1070 of Lecture
Notes in Computer Science, pages 33–48. Springer-Verlag, 1996.

[PBD15] Jaiberth Porras, John Baena, and Jintai Ding. New candidates for multivari-
ate trapdoor functions. Revista Colombiana de Matemáticas, 49:57–76, 06
2015.

[PG97] Jacques Patarin and Louis Goubin. Trapdoor one-way permutations and
multivariate polynominals. In ICICS ’97: Proceedings of the First Interna-
tional Conference on Information and Communication Security, pages 356–
368, London, UK, 1997. Springer-Verlag.

[PS16] Ray A. Perlner and Daniel Smith-Tone. Security analysis and key modifica-
tion for ZHFE. In Post-Quantum Cryptography - 7th International Conference,
PQCrypto 2016, Fukuoka, Japan, February 24-26, 2016. Proceedings, 2016.

107

BIBLIOGRAPHY

[Sho99] Peter W. Shor. Polynomial-time algorithms for prime factorization and dis-
crete logarithms on a quantum computer. SIAM Rev., 41(2):303–332 (elec-
tronic), 1999.

[Sho05] Victor Shoup. A Computational Introduction to Number Theory and Algebra.
Cambridge University Press, New York, NY, USA, 2005.

[Spa12] P-J. Spaenlehauer. Solving multi-homogeneous and determinantal systems.
Algorithms - Complexity - Applications. PhD thesis, Université Paris 6, 2012.

[YC05] Bo-Yin Yang and Jiun-Ming Chen. All in the XL Family: Theory and Practice,
pages 67–86. Springer Berlin Heidelberg, Berlin, Heidelberg, 2005.

108

	Introduction
	Motivation
	Contribution
	Outline
	Acknowledgments

	I Groebner Bases
	Groebner Bases: Definitions and Results
	Basic Definitions
	A Division Algorithm in F[x1,…,xn]
	Dickson's Lemma and Hilbert Basis Theorem
	Groebner Bases
	Some Applications of Groebner Bases
	The Ideal Membership Problem
	The Ideal Equality Problem
	Elimination Theory
	Solving Systems of Polynomial Equations

	Computation of Groebner Bases
	Buchberger's Algorithm
	Lazard's Algorithm
	Groebner Bases and Linear Algebra
	Homogeneous Lazard's Algorithm
	Affine (or General) Lazard's Algorithm
	Termination Criteria

	Remarks about Computational Improvements

	Complexity estimates
	Some words on Algebraic Geometry and Commutative Algebra
	Zariski topology
	Systems with Finitely Many Solutions
	Hilbert's Function and Hilbert's Series

	Degree of Regularity and Complexity of Lazard's Algorithm
	Regular and Semi-Regular Sequences
	Generic Properties
	Semi-Regular Sequences

	Homogeneous vs Affine Polynomial Systems
	Homogenization and Specialization
	Arithmetical Complexity for Affine Systems

	Dimension 0 vs Positive Dimension
	Falling Degree
	Reduced Ring
	Degree Falls and Trivial Degree Falls

	II Applications to the security of MPK Cryptosystems
	Multivariate Public Key Cryptography
	Preliminaries on Cryptography
	Public Key Cryptography
	Post-Quantum Cryptography

	Multivariate Public Key Cryptosystems
	First Reduction: Bipolar Construction
	Second Reduction: Lifting Idea
	General Construction

	Examples: HFE and ZHFE
	HFE
	ZHFE

	New Alternatives Using Cubic Polynomials
	Multivariate Noisy Encryption Scheme
	Description
	Computation of Cubic Droppings
	Performance
	Security analysis

	``Non-noisy'' Version
	Description
	Security analysis

	Two-Layer Construction
	Description
	Security Analysis
	Importance of using both Layers

	Appendix
	Preliminaries
	Finite Fields and Field Extensions
	Frobenius Powers

	Correspondence of Polynomials
	Computation of Liftings and Droppings in the Quadratic Case
	Experimental Data
	Groebner Bases Computation
	New Alternatives

	Bibliography

